Quality Control of Polysaccharides from Chinese Medicines

Based on Immunomodulatory Activity

by

MENG Lan-Zhen

Doctor of Philosophy in Biomedical Sciences

2014

Institute of Chinese Medical Sciences
University of Macau
Quality Control of Polysaccharides from Chinese Medicines

Based on Immunomodulatory Activity

by

MENG Lan-Zhen

SUPERVISOR: Professor LI Shao-Ping

Doctor of Philosophy in Biomedical Sciences

2014

Institute of Chinese Medical Sciences

University of Macau
Acknowledgements

First and foremost, I would like to express my sincere thanks to my supervisor Prof. Shao-Ping Li for giving me the opportunity to study, and for his constant guidance, great support and inexhaustible patience throughout my research work. I would also like to thank my co-supervisor Prof. Hong Nie from Jinan University, for her valuable suggestions and enthusiastic encouragement. I am especially grateful to Prof. Yi-Tao Wang, the director of our institute, for his enthusiastic encouragement, concern, and help.

I would like to express my heartfelt thanks to Prof. Ming-Yuen Lee, Dr. Qing-Wen Zhang, Dr. Ying Zheng, Dr. Ru Yan, and Dr. Jing Zhao for their valuable suggestions and assistance in my research. Also, I want to thank all the administrative staff Ms. Hattie U, Mr. Leon Lai, Ms. Sandy Lao, Ms. Wing Leong, Ms. Sio Kio Kuong, Mr. Dorian Ng, Ms. Chloe Lao, Ms. Carol Lam, Ms. Ada Wong and Ms. Katrina Wong, for their support during my studies and time in UM.

Moreover, I would like to thank all the colleagues of the Institute of Chinese Medical Sciences, University of Macau. Special thanks to Dr. Bao-Qin Lin, Kit-Leong Cheong, Shang Li, Kun Feng, De-Jun Hu, Shang Li, Yuan-Ye Dang, Bo Wang, Guang-Ping Lv, Lan-Ying Wang, and all members of Quality Control Research Group, who assisted and encouraged me during my research. Thanks to my friends Dr. Yuan-Jia Hu, Dr. Peng Li, Dr. Jian-Bo Wan, Dr. Ying-Bo Li, Dr. Xiao-Jia Chen, Dr. Zheng-Ming Qian, Dr. Wei-Hua Huang, Jing Xie, Ding-Tao Wu as well as other past and present labmates for their help, and giving me a happy memory of studying and working together.

Last but not least, I am extremely grateful to my family for their understanding,
endless patience and support during these years.
Abstract

Polysaccharides, one kind of main active compounds in Chinese medicines (CM), can be used as markers for quality control of CM. It is generally believed that biological activities of polysaccharides are closely related to their physico-chemical and/or structural properties. Unfortunately, chemical analysis of polysaccharides is a great challenge. However, various chemical characteristics previously found in polysaccharides from different species of *Dendrobium*, *Ganoderma* and *Cordyceps* were correlated with their immunomodulation. Therefore, a comparison of immunomodulatory activities of polysaccharides from CM is helpful to elucidate their efficacies and understand their quality.

In this thesis, the effects of polysaccharides from CM on RAW 264.7 murine macrophage functions, such as phagocytosis, release of NO and cytokines IL-1α, IL-6, IL-10 and TNF-α, were investigated and compared. The results showed that the effects of polysaccharides from different species of *Dendrobium* and *Ganoderma* on macrophages varied. Even polysaccharides in the same CM but collected from different places displayed variant activities, e.g. polysaccharides in *D. officinale* collected from Yunnan Province exerted the strongest immunomodulatory activities. Chemical characteristic studies showed that polysaccharides from *Dendrobium* and *Ganoderma* were diverse. This might contribute to their various effects. The cultured *Cordyceps* mycelia based on different fungi variously up-regulated macrophage functions, which mainly attribute to the effects of polysaccharides. Polysaccharides from cultured UM01 mycelia especially showed the strongest stimulating activities on macrophages.

It was interesting to find that UM01 polysaccharides induced macrophages
differentiated into dendritic-like cells. They induced dendritic cells maturation as demonstrated by increasing expression of antigen-presenting (MHC II), costimulatory (CD80 and CD86) molecules and production of IL-1α/β, IL-6 and TNF-α, decreasing antigen capture capacity and enhancing allogenic T cell stimulation. Besides, UM01 polysaccharides triggered IFN-γ and TNF-α production from human NK cells. The mechanism underlying the macrophage regulation of UM01 polysaccharides might be related to the activation of MAPK and NF-κB signaling pathways. These results suggested that cultured UM01 mycelia could be explored as a novel functional food.

In conclusion, diverse polysaccharides in CM led to their different immunomodulation. Study on immunomodulatory activity was an alternative method for quality evaluation of CM based on the polysaccharides.
Declaration

I declare that the thesis here submitted is original except for the source materials explicitly acknowledged and that this thesis as a whole, or any part of this thesis has not been previously submitted for the same degree or for a different degree.

I also acknowledge that I have read and understood the Rules on Handling Student Academic Dishonesty and the Regulations of the Student Discipline of the University of Macau.
2.2.2 Preparation of polysaccharide

2.2.3 Polysaccharide molecular weight determination

2.2.4 Compositional monosaccharide analysis of polysaccharides

2.2.5 Determination of endotoxin contamination

2.2.6 Cell culture

2.2.7 Cell proliferation assay

2.2.8 Nitric oxide determination

2.2.9 Phagocytic activity test

2.2.10 Quantitative analysis of cytokines/chemokines

2.2.11 Phenotypic and functional characterization

2.2.12 Statistical analysis

2.3 Results

2.3.1 Effects of polysaccharides from two species of *Ganoderma* (*Lingzhi*) on macrophage function

2.3.2 Effects of polysaccharides from different species of *Dendrobium* (*Shihu*) on macrophage functions

2.3.3 Effects of polysaccharides from cultured UM01 mycelia on RAW 264.7 macrophage functions

2.4 Discussion

2.4.1 Diverse polysaccharides in Chinese Medicines contributed to their various effects on macrophages functions

2.4.2 Polysaccharides from cultured UM01 mycelia potentially up-regulated macrophage functions

2.5 Conclusions

References

Chapter 3 Regulation on Phenotypic and Functional Maturation of Mouse JAWS II Dendritic Cells by Polysaccharides from Cultured UM01 Mycelia.

3.1 Introduction

3.2 Materials and Methods

3.2.1 Materials

3.2.2 Sample preparation

3.2.3 Cell culture

3.2.4 Cell viability assay

3.2.5 Phagocytic assay
3.2.6 Quantitative analysis of cytokines ... 98
3.2.7 Phenotypic and functional characterization .. 98
3.2.8 Mixed lymphocyte reaction (MLR) ... 98
3.2.9 Statistical analysis .. 99

3.3 Results .. 99

3.3.1 Effects of UM01 polysaccharides on the viability of cells and phagocytosis ... 99
3.3.2 Effects of UM01 polysaccharides on the cytokines release 100
3.3.3 Effects of UM01 polysaccharides on the phenotypic changes 100
3.3.4 Effects of UM01 polysaccharides on the ability of DCs to stimulate a mixed lymphocyte reaction ... 102

3.4 Discussion ... 103

3.5 Conclusions ... 105

References ... 105

Chapter 4 Effect of Polysaccharides from Cultured UM01 Mycelia on the Human Natural Killer Cell Function .. 109

4.1 Introduction .. 109

4.2 Materials and methods .. 109

4.2.1 Chemicals and materials ... 109
4.2.2 Sample preparation ... 110
4.2.3 Flowcytometric cytolytic activity assay ... 110
4.2.4 Dynamic monitoring of NK cell-mediated cytolysis 111
4.2.5 Quantitative analysis of cytokines ... 112
4.2.6 Statistical analysis .. 112

4.3 Results ... 113

4.3.1 Effects of UM01 polysaccharides on NK cell-mediated cytolytic activity ... 113
4.3.2 Effects of UM01 polysaccharides on cytokines release 115

4.4 Discussion .. 116

4.5 Conclusions ... 117

References ... 118

Chapter 5 Polysaccharides from the Cultured UM01 Mycelia might Activate Macrophages through MAPK and NF-κB Signal Pathways.................... 120

5.1 Introduction .. 120
5.2 Materials and methods .. 120
 5.2.1 Chemicals and materials .. 120
 5.2.2 Sample preparation ... 121
 5.2.3 Cell culture ... 121
 5.2.4 Cell proliferation assay ... 121
 5.2.5 Nitric oxide determination ... 121
 5.2.6 Phagocytic activity test .. 121
 5.2.7 Quantitative analysis of cytokines/chemokines ... 122
 5.2.8 RT-PCR .. 122
 5.2.9 Western blot assay .. 122
 5.2.10 Immunostaining assay .. 123
 5.2.11 Statistical analysis ... 123
5.3 Results .. 124
 5.3.1 Effects on macrophages proliferation ... 124
 5.3.2 Effects on nitric oxide production ... 124
 5.3.3 Effects on the phagocytosis activity ... 126
 5.3.4 Effects on cytokines production and gene expression 127
 5.3.5 Effects on MAPK phosphorylation and NK-κB signaling pathway 128
5.4 Discussion ... 130
5.5 Conclusions ... 132
References .. 132
Chapter 6 Conclusion Remarks .. 135
6.1 Conclusions ... 135
 6.1.1 Diverse polysaccharides in Chinese Medicines contributed to their various
effects on macrophages functions ... 135
 6.1.2 Cultured UM01 mycelia could be explored as a novel functional food 135
6.2 Limitations of Current Study .. 136
6.3 Perspectives for Future Work .. 136
Curriculum Vitae .. 137
List of Tables and Figures

Table 1.1 The major pharmacological activities of natural polysaccharides 13
Table 2.1 The list of Cordyceps samples ... 51
Table 2.2 Effects of Cordyceps extracts on RAW 264.7 mouse macrophages’ cell viability and NO product ... 52
Table 2.3 Yield, carbohydrate content, molecular weight and compositional monosaccharide of Ganoderma polysaccharides 61
Table 2.4 Effects of polysaccharides from Ganoderma on the cytokines secretion 66
Table 2.5 Yields, carbohydrate content, molecular weight and compositional monosaccharide of crude polysaccharides from Dendrobium 67
Table 2.6 Effects of crude polysaccharides from Dendrobium on NO release from RAW 264.7 macrophages ... 70
Table 2.7 Effects of crude polysaccharides from Dendrobium on phagocytosis of RAW 264.7 macrophages ... 71
Table 2.8 Effects of crude polysaccharides from Dendrobium on the secretion of cytokines ... 72
Table 2.9 Yield, carbohydrate content, molecular weight and compositional monosaccharide of polysaccharides from cultured UM01mycelia 74
Table 2.10 Effects of UM01 polysaccharides on the cytokines/chemokines secretion from RAW 264.7 macrophages ... 78
Table 3.1 Effects of UM01 polysaccharides on the cytokines secretion from JAWS II dendritic cells ... 78
Table 5.2 Effects of S4, 021 and 022 on the secretion of cytokines 100
Figure 1.1 Immune activation induced by polysaccharides 24
Figure 2.1 The plants of (A) G. lucidum and (B) G. sinense 47
Figure 2.2 The plants of (A) Dendrobium officinale, (B) D. fimbriatum, (C) D. huoshanense, (D) D. nobile and (E) D. chrysotoxum 50
Figure 2.3 HPSEC-RID profiles with Mw distribution of polysaccharides from (A) G. lucidum, (B) G. sinense ... 62
Figure 2.4 Typical SIM chromatograms of (A) mixed standards, and polysaccharides of (B) G. lucidum, (C) G. sinense ... 63
Figure 2.5 Effects of crude polysaccharides from Ganoderma on RAW 264.7 macrophages proliferation ... 64
Figure 2.6 Effects of crude polysaccharides from *Ganoderma* on NO release from RAW 264.7 macrophages... 64

Figure 2.7 Effects of *Ganoderma* polysaccharides on phagocytosis of RAW 264.7 macrophages... 66

Figure 2.8 HPSEC-RID profiles with molecular weight distribution of polysaccharides from *Dendrobium officinale* from (A) Yunnan, (B) Anhui, (C) Zhejiang (D) *D. fimbriatum* from Yunnan, (E) *D. huoshanense* from Anhui, (F) *D. nobile* and (G) *D. chrysotoxum* from Yunnan. 68

Figure 2.9 Typical SIM chromatograms of (A) mixed standards, and polysaccharides of *Dendrobium officinale* from (B) Yunnan, (C) Anhui, (D) Zhejiang, (E) *D. fimbriatum* from Yunnan, (F) *D. huoshanense* from Anhui, (G) *D. nobile* and (H) *D. chrysotoxum* from Yunnan................................. 69

Figure 2.10 Effects of crude polysaccharides from *Dendrobium* on RAW 264.7 macrophages proliferation................................. 70

Figure 2.11 (A) HPSEC-RID profiles with molecular weight distribution of UM01 polysaccharides and typical SIM chromatograms of (B) mixed standards and (C) UM01 polysaccharides. Ara, arabinose; Rib, ribose; Xyl, xylose; Rha, rhamnose; Fuc, Fucose; Man, mannose; Glu, glucose; Gal, galactose; Ma-ol, mannitol; IS, internal standard. .. 74

Figure 2.12 Effects of UM01 (AE, SM, CPs) extracts on RAW 264.7 macrophages proliferation... 75

Figure 2.13 Effects of UM01 (AE, SM, CPs) extracts on NO product from RAW 264.7 macrophages... 76

Figure 2.14 Effects of UM01 (AE, SM, CPs) extracts on phagocytic activity of RAW 264.7 macrophages... 77

Figure 2.15 Effects of UM01 polysaccharides on the morphological and phenotypic changes of RAW 264.7 macrophages... 79

Figure 3.1 Effects of UM01 polysaccharides on cell viability and phagocytic activity of JAWS II dendritic cells. ... 99

Figure 3.2 Effects of UM01 polysaccharides on the morphological and phenotypic changes of JAWS II dendritic cells... 102

Figure 3.3 Effect of UM01 polysaccharides on the ability of JAWS II dendritic cells to stimulate a mixed lymphocyte reaction................................. 103

Figure 4.1 Isolation of human CD56+ NK cells from peripheral blood mononuclear
cells ... 110

Figure 4.2 Flow cytometric analysis of NK cell-mediated cytolytic activity...... 113
Figure 4.3 Dynamic monitoring of NK cell-mediated cytolysis of A549 cells.... 115
Figure 4.4 Effects of UM01 polysaccharides on release of cytokines from NK cells. ... 116

Figure 5.1 Effects of S4, 021 and 022 on the viability of RAW 264.7 mouse macrophages... 124
Figure 5.2 Effects of S4, 021 and 022 on NO product and iNOS expression in RAW 264.7 mouse macrophages... 125
Figure 5.3 Effects of S4, 021 and 022 on phagocytic activity of RAW 264.7 mouse macrophages... 126
Figure 5.4 Effects of S4, 021 and 022 on the mRNA levels of cytokines in RAW 264.7 mouse macrophages... 128
Figure 5.5 Effect of S4, 021 and 022 on the activation of MAPK signaling pathway in RAW 264.7 mouse macrophages... 129
Figure 5.6 Effects of S4, 021 and 022 on the nuclear translocation of NF-κB-p65 in RAW 264.7 mouse macrophages... 130
List of Abbreviations

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>AE</td>
<td>aqueous extract</td>
</tr>
<tr>
<td>ANOVA</td>
<td>one-way analysis of variance</td>
</tr>
<tr>
<td>BSA</td>
<td>bovine serum albumin</td>
</tr>
<tr>
<td>CFSE</td>
<td>5(6)-Carboxyfluorescein diacetate N-succinimidyl ester</td>
</tr>
<tr>
<td>CI</td>
<td>cell index</td>
</tr>
<tr>
<td>CM</td>
<td>Chinese medicines</td>
</tr>
<tr>
<td>CPs</td>
<td>crude polysaccharides</td>
</tr>
<tr>
<td>DC</td>
<td>dendritic cell</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco’s Modified Eagle Medium</td>
</tr>
<tr>
<td>DMSO</td>
<td>dimethyl sulfoxide</td>
</tr>
<tr>
<td>FBS</td>
<td>fetal bovine serum</td>
</tr>
<tr>
<td>GC</td>
<td>gas chromatography</td>
</tr>
<tr>
<td>GL</td>
<td>Ganoderma lucidum</td>
</tr>
<tr>
<td>GS</td>
<td>Ganoderma sinense</td>
</tr>
<tr>
<td>HPLC</td>
<td>high-performance liquid chromatography</td>
</tr>
<tr>
<td>HPSEC-ELSD</td>
<td>high performance size exclusion chromatography-evaporative light scattering detection</td>
</tr>
<tr>
<td>HPTLC</td>
<td>high-performance thin-layer chromatography</td>
</tr>
<tr>
<td>IL</td>
<td>interleukin</td>
</tr>
<tr>
<td>iNOS</td>
<td>inducible nitric oxide synthase</td>
</tr>
<tr>
<td>IP-10</td>
<td>IFN-gamma-inducible protein 10</td>
</tr>
<tr>
<td>KC</td>
<td>keratinocyte-derived chemokine</td>
</tr>
<tr>
<td>LPS</td>
<td>lipopolysaccharide</td>
</tr>
<tr>
<td>MALLS</td>
<td>multi-angle laser light scattering</td>
</tr>
<tr>
<td>MCP-1</td>
<td>monocyte chemotactic protein-1</td>
</tr>
<tr>
<td>MFI</td>
<td>mean fluorescence intensity</td>
</tr>
<tr>
<td>MHC</td>
<td>major histocompatibility complex</td>
</tr>
<tr>
<td>MIP-1α</td>
<td>macrophage inflammatory protein-1α</td>
</tr>
<tr>
<td>MS</td>
<td>mass spectrometry</td>
</tr>
<tr>
<td>MTT</td>
<td>3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide</td>
</tr>
<tr>
<td>MLR</td>
<td>mixed lymphocyte reaction</td>
</tr>
<tr>
<td>Acronym</td>
<td>Full Form</td>
</tr>
<tr>
<td>---------</td>
<td>-----------</td>
</tr>
<tr>
<td>MW</td>
<td>molecular weight</td>
</tr>
<tr>
<td>NF-κB</td>
<td>Nuclear factor-kappa B</td>
</tr>
<tr>
<td>NO</td>
<td>nitric oxide</td>
</tr>
<tr>
<td>PBMCs</td>
<td>peripheral blood mononuclear cells</td>
</tr>
<tr>
<td>PBS</td>
<td>phosphate buffered saline</td>
</tr>
<tr>
<td>PI</td>
<td>propidium iodide</td>
</tr>
<tr>
<td>PolyB</td>
<td>polymyxin B</td>
</tr>
<tr>
<td>RT-PCR</td>
<td>real time quantitative PCR</td>
</tr>
<tr>
<td>RI</td>
<td>refractive index</td>
</tr>
<tr>
<td>SM</td>
<td>small molecular compounds</td>
</tr>
<tr>
<td>TNF-α</td>
<td>tumor necrosis factor-α</td>
</tr>
</tbody>
</table>