DESIGN OF A MOBILE RFID READER SYSTEM WITH CLOSELY PLACED ARRAY AND ITS APPLICATION TO SEGWAY VEHICLE

by

Ou Bin Kai

Master of Science in Electrical and Electronics Engineering

August 2013

Faculty of Science and Technology
University of Macau
DESIGN OF A MOBILE RFID READER SYSTEM WITH CLOSELY PLACED ARRAY AND ITS APPLICATION TO SEGWAY VEHICLE

by

Ou Bin Kai

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science
in
Electrical and Electronics Engineering

Faculty of Science and Technology
University of Macau

August 2013

Approved by

Supervisor

Co-Supervisor

Date
ABSTRACT

The radio frequency identification (RFID) technology with contactless object identification is essential for a wide range of industrial applications, including manufacturing, logistic, retail, warehouse and so forth. Amongst different operating frequencies, ultra-high frequency (UHF) RFID operated from 920 MHz to 925 MHz is attractive and it is still in growing of importance. Using backscattering communication, the read/write function between the object and the reader is realized in relatively long distance.

In this thesis, we intend to enhance object detection capability, smart antenna technique is thus studied. The phased array antenna is adopted, which not only extends the coverage by enhancing the antenna gain of the radiating beam, but also provides the beam steering capability to RFID readers. A 4-element Quasi-Yagi antenna array operated at 920 MHz is thus implemented, with flexible phase shift control by software leading to 40˚ beam steering controllability. Incorporating the developed antenna system with Segway vehicle, a mobile RFID item management platform is demonstrated.

It is well known that the array antenna suffers from the mutual coupling problem when they are closely placed, a simple and systematic decoupling network using parallel coupled-line (PCL) is thus proposed, and three types of PCL structure with open-ended, short-ended with capacitors loaded and inductors loaded are theoretically analyzed. At the center frequency of 920 MHz for UHF RFID, a design example for two closely coupled Quasi-Yagi antennas using open-ended PCL is designed and experimentally characterized, the port isolation has around 15 dB improvement compared with the uncoupled situation in the measurement. Besides, the port decoupling demonstrates a notable improvement of received signal strength indicator (RSSI) for single and multiple tag detections.
ACKNOWLEDGEMENTS

I am greatly indebted to my supervisors, Prof. Tam Kam-Weng and Dr. Ma Shao Dan, for their invaluable instruction and suggestion on my thesis as well as their careful reading of the manuscript, without their help, the completion of this thesis would not be possible. Prof. Tam always encouraging me to explore new thinking, enlarging my view on scientific and engineering aspect. During the preparation of writing thesis, he spent huge effort for reviewing because of my poor writing skills. Besides the knowledge that I learnt, I also appreciated his encouragement and dedication whenever I was exhausted and frustrated.

In addition, I would like to thank Dr. Choi Wai-Wa, Dr. Ting Sio-Weng and Mr. Pedro Cheong for technical support on RF/Microwave simulation software and sharing the experience in microstrip components designs. Specially thanks to Pedro, he always provides assistance to me and helps me to tackle many practical issues with patience, his experiences and ambition are valuable gifts to me. Moreover, thanks for all the members in Wireless Communication Laboratory, including Wen Yao, Hui, Sky and Li for their supports, I really enjoy the days to be with them. Last but not least, I appreciate my family and Grace for their tireless encouragement over past years of my study, which strengthened my persistence to accomplish my thesis.

This work is supported by the University Research Committee of the University of Macau under the Research Project RG058/08-09S/10R/CWW/FST and Science and Technology Development Fund of Macao, Grant No. 034/2008/A2, 020/2009/A, 020/2009/A1 and 042/2011/A2.
TABLE OF CONTENTS

ABSTRACT ... i
ACKNOWLEDGEMENTS .. ii
TABLE OF CONTENTS ... iii
LIST OF FIGURES ... vi
LIST OF TABLES ... x
LIST OF ABBREVIATIONS .. xi
CHAPTER 1 INTRODUCTION ... 1
 1.1 Challenges in RFID Phased Array Reader ... 2
 1.2 Thesis Organization ... 4
 1.3 Originality .. 5
 References .. 6
CHAPTER 2 UHF RFID FUNDAMENTALS .. 8
 2.1 Basic Operation .. 8
 2.2 Standards, Regulations and Protocols ... 9
 2.2.1 International Standards of RFID ... 9
 2.2.2 The Classification of RFID ... 12
 2.2.3 The Regulations of UHF RFID ... 13
 2.2.4 Protocols .. 16
 2.3 RFID Reader .. 19
 2.3.1 Reader Antennas .. 21
 2.4 RFID Tag ... 23
 2.4.1 Tag Antennas ... 23
 2.5 RFID Tag Array for Communication and Sensing .. 24
 2.5.1 Receiving Power Level for Passive UHF RFID Tag 24
 2.5.2 Passive Tag Based Liquid Sensing .. 25
 1.1.1 II. RFID TAG ARRAY PLATFORM FOR ELDERLY BALANCE 26
 2.5.3 Tag Array for Object Orientation Detection .. 27
4.4.4 Design Method and Optimization of Parallel Coupled-Line Based Decoupling Network ...71
4.5 An Example of Parallel Coupled-Line Based Decoupling Network72
4.6 Chapter Summary ...76
References ..78

CHAPTER 5 UHF RFID SEGWAY VEHICLE USING CLOSELY PLACED ANTENNA ARRAY ...80
5.1 Introduction to Segway Vehicle ...80
5.2 Compact UHF RFID Phased Array System ...82
 5.2.1 Antennas and Phase Shift Network ..82
 5.2.2 Wireless Voltage Controller ..86
 5.2.3 Software Control Center of Beam Steering ..89
 5.2.4 Performance of Compact Phased Array Antenna92
5.3 Prototype of Mobile RFID Array Platform and Experimental Results99
 5.3.1 Tag detection with/without decoupling network100
 5.3.2 Practical Test on the Segway Vehicle ...103
5.4 Summary ..105
References ..106

CHAPTER 6 CONCLUSION AND FUTURE WORKS108
6.1 Concluding Remarks ..108
6.2 Future Works ..109
References ..111

APPENDIX A - RF/ MICROWAVE PCB MATERIAL – RO4003®113
Reference ..115

APPENDIX B - SKYWORKS PS088-315 VOLTAGE CONTROLLED PHASE SHIFTER ..116

APPENDIX C - ANALOG DEVICES AD5724R QUAR-CHANNEL 12-BIT VOLTAGE OUTPUT DAC ..118

APPENDIX D - IDS-R902DRM UHF RFID DEVELOPMENT SYSTEMS121

APPENDIX E - SUPERWA SEGWAY VEHICLE ...123
LIST OF FIGURES

Fig. 1.1. A general architecture of RFID system...1
Fig. 1.2. Smart antenna at RFID reader...2
Fig. 1.3. Mutual coupling effect on antennas with separation below λ/2.............3
Fig. 2.1. A general architecture of RFID system...9
Fig. 2.2. The frequency band allocations of GSM and RFID in China, Macao and
 Hong Kong..14
Fig. 2.3. The distribution of UHF-RFID frequencies in the world.........................14
Fig. 2.4. The regulated frequencies and power of UHF RFID in other countries.....15
Fig. 2.5. Example of tag inventory and access..16
Fig. 2.6. Example of tag inventory and access in frame format.............................17
Fig. 2.7. An example of ASK modulation over a coded data: 010...........................18
Fig. 2.8. Block diagram of a general RFID reader..20
Fig. 2.9. A commercial UHF RFID reader without case..20
Fig. 2.10. The conventional UHF antenna of UHF RFID system............................22
Fig. 2.11. An USB-powered active RFID tag...23
Fig. 2.12. A commercial passive UHF RFID tag from Rafsec...............................24
Fig. 2.13. Glass beaker with a tag vertically attached...26
Fig. 2.14. RFID tag array liquid sensing...26
Fig. 2.15. Orientation detection platform using tag array (a) Tag array on the
 plastic container (b) Measurement setup for proposed detection method......27
Fig. 2.16. Normalized RSSI ratio with different incline angle (a) front and rear (b)
 left and right...29
Fig. 3.1. Conventional and smart RFID base station antennas. Solid lines indicate
 light-of-sight, while dotted lines indicate interferences...............................34
Fig. 3.2. Superposition of multi path waves corresponding to Fig. 3.1..................34
Fig. 3.3. The development and categorization of base station antenna..................36
Fig. 3.4. Basic block diagram of switched-beam antenna......................................37
Fig. 3.5. Basic block diagram of a phased array antenna......................................38
Fig. 3.6. Adaptive antenna in block diagram..39
Fig. 3.7. A uniform linear array with K antennas..41
Fig. 3.8. Linear array antenna with equal path length power combiner/divider network. ..44
Fig. 3.9. The array factor of a linear 4-element broadside array with element
distance (a) $d = \lambda/2$ (b) $d = \lambda$. ..45
Fig. 3.10. A linear phased array of K antennas..46
Fig. 3.11. The array factor of a linear 4-element broadside array with phase compensation as $\theta = \theta_0$ element distance (a) $d = \lambda/2$ (b) $d = \lambda$.48
Fig. 4.1. Representation of antenna array with mutual coupling effect..........................53
Fig. 4.2. Two closely-packed PIFAs with SRR ..54
Fig. 4.3. Two closely-packed PIFAs with dumb-bell like DGS55
Fig. 4.4. Decoupled two-element array by coupled resonator.......................................56
Fig. 4.5. (a) Top view (b) bottom view of modified Quasi-Yagi antenna57
Fig. 4.6. Photographs of modified Quasi-Yagi antenna in top View and bottom View ..58
Fig. 4.7. The simulation (---) and measurement (—) result of return loss59
Fig. 4.8. Simulated current distribution of Quasi-Yagi antenna59
Fig. 4.9. Simulated normalized radiation in (a) 3D plot, (b) YoZ plane (-) and XoZ plane (---). ..60
Fig. 4.10. Stub length variation again $|S_{11}|$...61
Fig. 4.11. Measurement setup for closely placed antennas. ...62
Fig. 4.12. Magnitude (—) and phase (---) of S_{21} of the coupled antennas with
different separation ..63
Fig. 4.13. Matching of the coupled antennas with different separation ($|S_{11}|$ (—),$|S_{22}|$ (---)). ..63
Fig. 4.14. Schematic of two-port network model of closely placed array with compensation. ..64
Fig. 4.15. Schematic of open-ended PCL pair ..66
Fig. 4.16. Schematic of short-ended PCL with loaded capacitors....................................67
Fig. 4.17. Magnitude (—) and phase (---) of S_{21} of short-ended PCL with loaded capacitors. ...69
Fig. 4.18. Schematic of short-ended PCL with loaded inductors ...70

Fig. 4.19. Magnitude (—) and phase (---) of S_{21} of short-ended PCL with loaded inductors ...71

Fig. 4.20. Design and optimization flow of short-ended PCL with capacitor or inductor. ...72

Fig. 4.21. The proposed decoupling network based on PCL ...73

Fig. 4.22. Physical layout of the proposed decoupling network ..74

Fig. 4.23. Photograph of the coupled antenna with decoupling network.74

Fig. 4.24. Measured S_{11} (—) and S_{21} (---) of two closely coupled antennas (a) without and (b) with the decoupling network ...75

Fig. 5.1. Photograph of Segway vehicle. ...81

Fig. 5.2. System architecture of compact phased array system for UHF RFID.82

Fig. 5.3. Block diagram of voltage controlled phased array ...83

Fig. 5.4. Prototype of 4-element printed Quasi-Yagi antenna array84

Fig. 5.5. Phase response against frequency with different voltage at 920 MHz85

Fig. 5.6. The prototype of voltage-control phase shift network85

Fig. 5.7. Schematic of voltage management module ..86

Fig. 5.8. The prototype of proposed module ..87

Fig. 5.9. Block diagram of the proposed system ...89

Fig. 5.10. Block diagram of beam control of UHF RFID reader90

Fig. 5.11. Graphical interface for UHF RFID reader and beam steering control90

Fig. 5.12. Snapshot of the control part of phase shift from interface91

Fig. 5.13. Snapshot of beam steering and tag inventory ..91

Fig. 5.14. Snapshot of the tag inventory result ...92

Fig. 5.15. Prototype of the compact phased array antenna system with UHF reader and battery supply ...92

Fig. 5.16. Relationship between phase difference and beam steering angle with different separation at $\lambda/4$, $\lambda/2$, λ. ...94

Fig. 5.17. Array configuration in the simulation environment ..95

Fig. 5.18. Quasi-Yagi array pattern (a) with (b) without mutual coupling effect96

Fig. 5.19. Quasi-Yagi array pattern applied phase difference between elements (a) with (b) without mutual coupling effect ...97
Fig. 5.20. Deployment of array pattern approximation with single tag detection.98
Fig. 5.21. Approximation of partial radiation pattern with equal phase difference.99
Fig. 5.22. Approximation of partial radiation pattern with 30° phase difference.99
Fig. 5.23. Prototype of mobility RFID array platform. ..100
Fig. 5.24. Testing setup for multi-tag detection with decoupling network.100
Fig. 5.25. Testing setup for multi-tag detection on Segway vehicle.103
Fig. 5.26. One dimensional multiple tag detection result of phased array antenna
 (—) and single antenna (---) on the Segway vehicle.104
LIST OF TABLES

Table 2.1 RFID classified by EPCglobal. ... 11
Table 2.2 RFID at different operating range and frequency. 12
Table 2.3 The frequencies and limitation power of different countries and regions. 15
Table 4.1 Simulation and measurement of return loss of printed Quasi-Yagi antenna. ..60
Table 5.1 Characteristic parameters of the compact phased array. 93
Table 5.2 Comparison for 1 tag detection with/without decoupling network 101
Table 5.3 Comparison for 2 tags detection with/without decoupling network. 101
Table 5.4 Comparison for 3 tags detection with/without decoupling network. 101
Table 5.5 Comparison for 4 tags detection with/without decoupling network. 102
Table 5.6 Comparison for 5 tags detection with/without decoupling network. 102
LIST OF ABBREVIATIONS

RFID Radio frequency identification

PCL Parallel coupled-line

ISO International organization for standardization

IEC International electro technical commission

EPC Electronic product code

ETSI European telecommunications standard institute

ERP Effective/Equivalent radiated power

EIRP Effective/Equivalent isotropically radiated power

ASK Amplitude shift keying

MCU Microprocessor Unit

RSSI Received signal strength indicator

DAC Digital-to-analog converter

CPW Co-planar waveguide

PIFA Planar inverted F antenna

SRR Split ring resonator

DGS Defected ground structure

SPI Serial peripheral interface