Investigation on the In-plane Nonlinear Vibration of Cables with Small Sag and Large Sag

by

Kun Wang

Master of Science in Civil Engineering

2013

Faculty of Science and Technology
University of Macau
Investigation on the In-plane Nonlinear Vibration of Cables with Small Sag and Large Sag

by

Kun Wang

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Civil Engineering

Faculty of Science and Technology
University of Macau

2013

Approved by ________________________________
Supervisor

Date ________________________________
In presenting this thesis in partial fulfillment of the requirements for a Master's degree at the University of Macau, I agree that the Library and the Faculty of Science and Technology shall make its copies freely available for inspection. However, reproduction of this thesis for any purposes or by any means shall not be allowed without my written permission. Authorization is sought by contacting the author at

Telephone: 63584620/153623584620
E-mail: kun__1989@126.com

Signature _____________________
Date _________________________
Abstract

Investigation on the In-plane Nonlinear Vibration of Cables with Small Sag and Large Sag

by Kun Wang

Thesis Supervisor: Prof. Guo-Kang Er
Department of Civil and Environmental Engineering

In this thesis, the partial differential equations in time and space about the vibrations of both inclined cables with small sag-to-span ratio and horizontal suspended cable with large sag-to-span ratio are derived. The confusion in deriving the expression of the horizontal component of the cable tensile force in the present cable theory is identified and clarified. Then the deriving procedure and the expression for the horizontal component of the cable tensile force used for hundreds of years are revised. The geometrically nonlinear terms are considered in formulating the equations of motion of cables. Galerkin’s method is applied to make the nonlinear partial differential equations reduced to nonlinear ordinary differential equations (ODEs) or multi-degree-of-freedom nonlinear dynamical systems. Finally, Runge-Kutta method is used to obtain both the linear and nonlinear steady state response of the cables. The convergence of the solutions is investigated as the number of shape functions increases and the frequency of external harmonic excitation changes. The results of
the nonlinear systems and the simplified linear system are compared to show the importance of considering the nonlinearity and analyzing the vibrations of the cables as a multi-degree-of-freedom systems rather than only a single-degree-of-freedom system. For the suspended cable with large sag, the limit of sag-to-span ratio is also investigated and determined in the numerical analysis. The conditions of replacing the differential arc length ds by the horizontal differential length dx are also investigated with some conclusions given.

Key Words: cable, sag-to-span ratio, geometrical nonlinearity, steady state response, shape function, multi-degree-of-freedom system.
Acknowledgements

My master study at University of Macau will soon come to an end. Here I would like to express my sincere thanks to all those who have given me invaluable help during the times of my study and research.

Firstly, I would like to express my heartfelt appreciation and thanks to my supervisor, Professor Guo-Kang Er, for his patient guidance and suggestion throughout my research. I have benefit a lot from his philosophical perspectives and visions. For this thesis, he has walked with me through all the stages of the research. Without his consistent and illuminating instruction, the thesis could not have reached its present form.

Secondly, I would like to express my thanks to all the other faculty professors of the Department of Civil and Environmental Engineering for their patient instructions in various courses.

Thirdly, special thanks belong to my friends in the University of Macau. The members of our group: Siu-Siu Guo, Zhe Tang, Tian-Long Yue, Ya-Nan Lu. My dear friends: He-Qing Mu, Yang Yang, Jian-Tao Li, Xuan Wang, Wei Wang, Lang-Kun Xie, Chen Li, Rong-Rong Xu, Lin-Shuang Zhao. The encouragement and accompany from then made my life colorful.

Lastly, I am deeply grateful to my parents and my sister, for their constant support and encouragement.
Table of Contents

Abstract .. iii

Acknowledgements .. v

Table of Contents .. vi

List of Figures ... ix

List of Tables .. xiii

Chapter 1 Introduction ... 1

Chapter 2 Literature Review ... 3

2.1 Early works .. 3

2.2 Recent works ... 4

2.3 The work and objectives of this thesis .. 9

Chapter 3 Nonlinear Vibration of Inclined Cable with Small Sag-to-span Ratio 11

3.1 Static equilibrium ... 11

3.2 Theory of in-plane vibration .. 13

3.2.1 Conventional expression of the horizontal component of cable internal force ... 15

3.2.2 Compatibility equation and corrected expression of the horizontal component of cable internal force ... 18
3.2.3 Mode functions of linear cable ... 19

3.2.4 MDOF systems formulated with Galerkin’s method 21

3.2.4.1 Case 1: \(ds = \left(1 + y^2_x\right)^{\frac{1}{2}} \) \(dx \) ... 21

3.2.4.2 Case 2: \(ds \approx dx \) ... 25

Chapter 4 Numerical Analysis of Inclined Cable with Small Sag-to-span Ratio 30

4.1 Parameters of inclined cable ... 30

4.2 Numerical results and analysis .. 32

Chapter 5 Nonlinear Vibration of Horizontally Suspended Cable with Large Sag-to-span Ratio ... 47

5.1 Static equilibrium .. 48

5.2 Theory of in-plane vibration .. 50

5.2.1 Conventional expression of the horizontal component of cable internal force .. 52

5.2.2 Compatibility equation and corrected expression of the horizontal component of cable internal force .. 54

5.2.3 MDOF system formulated with Galerkin’s method.......................... 55

5.2.3.1 Case 1. \(ds = \left(1 + y^2_x\right)^{\frac{1}{2}} \) \(dx \) ... 56

5.2.3.2 Case 2. \(ds \approx dx \) ... 63
Chapter 6 Numerical Analysis of Horizontally Suspended Cables with Large Sag-to-span Ratio ... 70

6.1 Parameters for suspended cable .. 70

6.2 Numerical results and comparison .. 71

6.2.1 Different sag-to-span ratio with same frequency of excitation 71

6.2.2 Same sag-to-span ratio with different frequency of excitation 83

Chapter 7 Summary and Conclusions ... 98

7.1 Summary .. 98

7.2 Conclusions .. 98

7.3 Future works .. 100

References .. 102
List of Figures

Figure 3.1 Inclined cable...12
Figure 3.2 Differential cable element in static state...12
Figure 3.3 Differential cable element in dynamic state ..14
Figure 4.1 Plot of first shape function when \(\frac{d}{l} = 1/150 \) ...33
Figure 4.2 Plot of second shape function when \(\frac{d}{l} = 1/150 \) ..33
Figure 4.3 Plot of third shape function when \(\frac{d}{l} = 1/150 \) ..34
Figure 4.4 Plot of fourth shape function when \(\frac{d}{l} = 1/150 \) ..34
Figure 4.5 The linear and nonlinear responses with different number of shape
functions when \(\frac{d}{l} = 1/150 \) and \(\Omega = 1 \text{rad/s} \) ...37
Figure 4.6 The linear and nonlinear responses with different number of shape
functions when \(\frac{d}{l} = 1/150 \) and \(\Omega = 10 \text{rad/s} \) ...38
Figure 4.7 The linear and nonlinear responses with different number of shape
functions when \(\frac{d}{l} = 1/150 \) and \(\Omega = 12 \text{rad/s} \) ...39
Figure 4.8 The linear response time history with 5 shape functions when
\(\frac{d}{l} = 1/150 \) and \(\Omega = 10 \text{rad/s} \) ..41
Figure 4.9 The nonlinear response time history with 5 shape functions when
\(\frac{d}{l} = 1/150 \) and \(\Omega = 10 \text{rad/s} \) ..41
Figure 4.10 The linear response time history with 6 shape functions when
\(\frac{d}{l} = 1/150 \) and \(\Omega = 12 \text{rad/s} \) ..42
Figure 4.11 The nonlinear response time history with 6 shape functions when
\[\frac{d}{l} = 1/150 \quad \text{and} \quad \Omega = 12 \text{rad/s} \]

Figure 4.12 Linear and nonlinear steady state responses under different sag-to-span ratio when \(\Omega = 1 \text{rad/s} \).

Figure 4.13 Linear and nonlinear steady state responses under different sag-to-span ratio when \(\Omega = 10 \text{rad/s} \).

Figure 5.1 The static curve and dynamic displacement of horizontally suspended cable.

Figure 5.2 The static state of a differential cable element.

Figure 5.3 The dynamic state of a differential cable element.

Figure 6.1 Plot of first shape function when \(\frac{d}{l} = 1/20 \).

Figure 6.2 Plot of second shape function when \(\frac{d}{l} = 1/20 \).

Figure 6.3 Plot of third shape function when \(\frac{d}{l} = 1/20 \).

Figure 6.4 Plot of fourth shape function when \(\frac{d}{l} = 1/20 \).

Figure 6.5 Plot of four shape functions when \(\frac{d}{l} = 1/20 \).

Figure 6.6 The steady state response of linear system in two cases with different number of shape functions when \(\frac{d}{l} = 1/16 \).

Figure 6.7 The steady state response of nonlinear system in two cases with different number of shape functions when \(\frac{d}{l} = 1/16 \).
Figure 6.8 The response time history of the linear system using 7 shape functions in the case of \[ds = \left(1 + y'^2\right)^{\frac{1}{2}} \, dx \] ... 80

Figure 6.9 The response time history of the nonlinear system using 7 shape functions in the case of \[ds = \left(1 + y'^2\right)^{\frac{1}{2}} \, dx \] ... 80

Figure 6.10 The steady state response of linear system in two cases by using seven shape functions for different sag-to-span ratio .. 82

Figure 6.11 The steady state response of nonlinear system in two cases by using seven shape functions for different sag-to-span ratio................................. 82

Figure 6.12 Steady state response of the linear system and nonlinear system with different number of shape functions when \(\Omega = 0.676 \, rad/s \) and \(d/l = 1/20 \) .. 86

Figure 6.13 Steady state response of the linear system and nonlinear system with different number of shape functions when \(\Omega = 2 \, rad/s \) and \(d/l = 1/20 \) 87

Figure 6.14 Steady state response of the linear system and nonlinear system with different number of shape functions when \(\Omega = 2.5 \, rad/s \) and \(d/l = 1/20 \) .. 88

Figure 6.15 Steady state response of the linear system and nonlinear system with different number of shape functions when \(\Omega = 5 \, rad/s \), \(d/l = 1/20 \) and \(p_0 = 10kN \) .. 90

Figure 6.16 The response time history of linear system using 9 shape functions when \(\Omega = 2 \, rad/s \) and \(d/l = 1/20 \) .. 90
Figure 6.17 The response time history of nonlinear system using 3 shape functions when $\Omega = 2 rad/s$ and $d/l = 1/20$... 91

Figure 6.18 The response time history of nonlinear system using 4 shape functions when $\Omega = 2 rad/s$ and $d/l = 1/20$... 91

Figure 6.19 The response time history of nonlinear system using 9 shape functions when $\Omega = 2 rad/s$ and $d/l = 1/20$... 92

Figure 6.20 Steady state responses of the linear system and nonlinear system with different number of shape functions when $\Omega = 5 rad/s, d/l = 1/20$ and $p_0 = 30 kN$... 96

Figure 6.21 The response time history of linear system using 9 shape functions when $\Omega = 2 rad/s, d/l = 1/20$ and $p_0 = 30 kN$... 96

Figure 6.22 The response time history of nonlinear system using 9 shape functions when $\Omega = 2 rad/s, d/l = 1/20$ and $p_0 = 30 kN$ 97

List of Tables

Table 4.1 Length and diameter of cables for different d/l 31

Table 4.2 The circular frequencies (rad/s) of first five modes for different d/l 32

Table 4.3 λ^2 and ω_i for $d/l = 1/150$... 32

Table 4.4 The linear and nonlinear steady state responses in two cases with different number of shape functions when $d/l = 1/150$ and $\Omega = 1\text{rad/s}$

(The error is relative to the Case1. $ds = \left(1 + y_i^2\right)^{1/2} dx$.) 36

Table 4.5 The linear and nonlinear responses with different number of shape functions when $d/l = 1/150$ and $\Omega = 1\text{rad/s}$. (The error is relative to the latter one) ... 37

Table 4.6 The linear and nonlinear responses with different number of shape functions when $d/l = 1/150$ and $\Omega = 10\text{rad/s}$. (The error is relative to the latter one) ... 38

Table 4.7 The linear and nonlinear responses with different number of shape functions when $d/l = 1/150$ and $\Omega = 12\text{rad/s}$ (The error is relative to the latter one) ... 38

Table 4.8 Linear and nonlinear steady state responses under different sag-to-span ratio when $\Omega = 1\text{rad/s}$ (Error is related to max nonlinear steady state response) ... 43
Table 4.9 Linear and nonlinear steady state responses under different sag-to-span ratio when \(\Omega = 10 \text{rad/s} \) (Error is related to max nonlinear steady state response) .. 44

Table 6.1 \(\lambda^2 \) and \(\omega_i \) for different sag-to-span ratios.................................73

Table 6.2 The steady state response (m) of linear system in Case 1.
\[ds = \left(1 + y_i^2 \right)^{\frac{1}{2}} dx \] and Case 2. \(ds \approx dx \) with different number of shape functions when \(d/l = 1/16 \) (The error is relative to the latter one)77

Table 6.3 The steady state response (m) of nonlinear system in Case 1
\[ds = \left(1 + y_i^2 \right)^{\frac{1}{2}} dx \] and Case 2. \(ds \approx dx \) with different number of shape functions when \(d/l = 1/16 \) (The error is relative to the latter one) 78

Table 6.4 The steady state response (m) of linear system and nonlinear system in Case 1. \(ds = \left(1 + y_i^2 \right)^{\frac{1}{2}} dx \) and Case 2. \(ds \approx dx \) by using seven shape functions when \(d/l = 1/12, 1/14, 1/16, 1/18, 1/20 \) (The error is related to case 1) .. 81

Table 6.5 First ten natural frequencies and the corresponding \(f_m/a_m \) when \(d/l = 1/20 \) ... 84

Table 6.6 Steady state response of the linear system and nonlinear system with different number of shape functions when \(\Omega = 0.676 \text{rad/s} \) and \(d/l = 1/20 \) (The error is relative to the latter one) ... 85
Table 6.7 Steady state response of the linear system and nonlinear system with different number of shape functions when $\Omega = 2\text{rad/s}$ and $d/l = 1/20$

(The error is relative to the latter one) .. 86

Table 6.8 Steady state response of the linear system and nonlinear system with different number of shape functions when $\Omega = 2.5\text{rad/s}$ and $d/l = 1/20$

(The error is relative to the latter one) ... 88

Table 6.9 Steady state response of the linear system and nonlinear system with different number of shape functions when $\Omega = 5\text{rad/s}$, $d/l = 1/20$ and $p_0 = 10kN$ (The error is relative to the latter one) ... 89

Table 6.10 Steady state responses of the linear system and nonlinear system with different number of shape functions when $\Omega = 5\text{rad/s}$, $d/l = 1/20$ and $p_0 = 30kN$ (The error is relative to the latter one) ... 95