Experimental and Analytical Studies on Performance of Lapped Composite Slabs

by

HO Chi Kin

Master of Science in Civil Engineering

2013

Faculty of Science and Technology
University of Macau
Experimental and Analytical Studies on Performance of Lapped Composite Slabs

by

HO Chi kin

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science in Civil Engineering

Faculty of Science and Technology
University of Macau

2013

Approved by ___

Supervisor: Prof. IU Vai Pan

Date __
In presenting this thesis in partial fulfillment of the requirements for a Master's degree at the University of Macau, I agree that the Library and the Faculty of Science and Technology shall make its copies freely available for inspection. However, reproduction of this thesis for any purposes or by any means shall not be allowed without my written permission. Authorization is sought by contacting the author at

Address:

Telephone: +853-66876314
Fax: N/A
E-mail: ckjasonho@gmail.com

Signature ______________________
Date __________________________
University of Macau

Abstract

Experimental and Analytical Studies on Performance of Lapped Composite Slabs

by HO Chi Kin

Thesis Supervisor: Prof. IU Vai Pan
Department of Civil and environmental Engineering
University of Macau

The strength and behavior of composite slabs are mainly governed by the longitudinal shear connection between profiled steel decking and concrete. The composite slab is an orthotropic plate element that the design resistance of composite slabs especially for the longitudinal shear resistance can’t be derived directly from simple calculation in current code of standards around the world. Up to this moment, the most reliable approach in standards for evaluation and prediction of these parameters is traditional performance tests. However, the present test configuration of slab tests does not reflect the realistic performance of load-carrying capacity and behavior of composite slabs. On the other side, some of unfavorable phenomenon was influenced the strength that seldom occurred on site condition and normal practical usage.

To investigate the actual performance of composite slabs, eighteen simply supported one-span test specimens were prepared with shorter and longer shear spans. Three different configurations of specimens namely, single width slab, double width slab and side lapping slab in one panel width have been adopted in simply supported slabs. The same geometry and grade of re-entrance profiled steel decking without end anchorage were assumed in this study. The test program was prepared in accordance with the requirement of Eurocode 4 which is currently in force in Macau.
In this experimental study, the structural performance of composite slabs such as maximum applied load, displacement, end slips and strain of concrete and profiled steel decking as well as failure mode of the full scale slabs are investigated and presented among three different configurations of test specimens. A comprehensive parametric and results analysis have been carried out to investigate the behavior and performance of composite slabs among the specimens. The test results in ultimate and serviceability limit state have been recorded and studied in this paper. The parameters of mechanical interlock \((m)\) and friction \((k)\) were investigated from the three series of specimens. The longitudinal shear bond resistance between profiled steel decking and concrete was determined by two methods: by \(m-k\) and partial shear connection method \((PSC)\). The difference between two methods from all specimens varies from 4.6% to 31.9%. A considerable increase occurs on the resistance of slabs for namely, side lapping slab specimens compared with single width slab specimens or double width slab specimens. On the other side, the dramatic increase on ultimate resistance of 121% and 158% for specimens of double width slab was found compared with the test results of single width specimens. It is shown that the slabs with short shear span have a higher ultimate load resistance and shear bond resistance than that of the composite slabs with longer shear span. The edge web curling in the specimens of single width panel and double width panels occurred in the slabs with short shear span during the experiments. The edge deflection of slabs was greater than the center deflection at mid span section.

These results revealed that the shortcomings in present test configurations that need to consider and improve in future experiment in order to evaluate the actual performance of composite slabs. Based on the test results, a proposed calculation for predicting the ultimate resistance of wide slabs in this paper is in good agreement with the performance test results of full scale specimens.
Acknowledgements

First and most importantly, I wish to express my sincere gratitude and appreciation to my supervisor, Prof. Iu Vai Pan, for his enthusiastic guidance, generous support, patience and invaluable discussion throughout the entire course of my research study. His heart-felt encouragement and conscientious working attitude not only train me to work like a researcher, but also motivate me to pursue a remarkable achievement in my life.

I would also like to thank Prof. SHI Yong Jiu and Prof. K. F. Chung for his broad-ranging technical advice, invaluable guidance and continuous inspiration in many areas of this work.

I acknowledge the financial and unfailing support by the Mr. Danny H.Y. Cheung, Managing Director of Genyield Construction Co., Ltd, and Mr. Y.K. Pang, Managing Director of P&Ls who made my dream come true. They have also been a strong proponent of the work and encouragement in this way has been greatly appreciated.

I am grateful to the Chess Applied Building Technology Consultant (ZhuHai) co., Ltd., in particular Mr. Xing Zhi Yong who strongly supported my experiment in his role as Vice General Manager, technician You Chao accompanied with me throughout experiment duration.

My sincere appreciation goes to Miss Stephanie Shen for her great support and encouragement, my best friend Lan Shuang Wen and extend my appreciation to all those who directly or indirectly have assisted me during MSc study.

Finally, I am deeply grateful to my parents, to whom this thesis is dedicated of for their love and patience in the pursuit of my academic goals.

Ho Chi Kin

Macao SAR, China

June 14, 2013
Table of Contents

Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>List of Tables</td>
<td>iii</td>
</tr>
<tr>
<td>List of Figures</td>
<td>iv</td>
</tr>
<tr>
<td>Notation</td>
<td>viii</td>
</tr>
<tr>
<td>Chapter 1: Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1 Background</td>
<td>1</td>
</tr>
<tr>
<td>1.2 Objectives and Scope of Work</td>
<td>5</td>
</tr>
<tr>
<td>1.3 Organization of the Thesis</td>
<td>6</td>
</tr>
<tr>
<td>Chapter 2: Literature Review</td>
<td>8</td>
</tr>
<tr>
<td>2.1 Introduction</td>
<td>8</td>
</tr>
<tr>
<td>2.2 Behavior and materials of Composite Slabs</td>
<td>8</td>
</tr>
<tr>
<td>2.2.1 Profiled Steel Decking</td>
<td>8</td>
</tr>
<tr>
<td>2.2.2 Concrete</td>
<td>9</td>
</tr>
<tr>
<td>2.2.3 Behavior of Composite Slabs at construction stage</td>
<td>9</td>
</tr>
<tr>
<td>2.3 Previous Works on Composite Slabs</td>
<td>12</td>
</tr>
<tr>
<td>2.3.1 Experimental investigation of performance tests (one-way slabs)</td>
<td>12</td>
</tr>
<tr>
<td>2.3.2 Experimental investigation and numerical study of two-way slabs</td>
<td>14</td>
</tr>
<tr>
<td>2.3.3 Longitudinal shear behavior studies of composite slabs</td>
<td>16</td>
</tr>
<tr>
<td>2.3.4 Influences of load arrangement and end constraint of composite slab tests</td>
<td>17</td>
</tr>
<tr>
<td>2.3.5 Calculation method and parametrical study of composite slab tests</td>
<td>18</td>
</tr>
<tr>
<td>2.3.5 Latest testing method and use of new concrete for composite slabs</td>
<td>20</td>
</tr>
<tr>
<td>Chapter 3: Experimental Program</td>
<td>22</td>
</tr>
<tr>
<td>3.1 Specimen Description</td>
<td>22</td>
</tr>
<tr>
<td>3.1.1 Composite slabs specimens</td>
<td>22</td>
</tr>
<tr>
<td>3.1.2 Fabrication of composite slabs with re-entrance profiles</td>
<td>26</td>
</tr>
<tr>
<td>3.1.3 Concreting</td>
<td>28</td>
</tr>
<tr>
<td>3.2 Test setup</td>
<td>31</td>
</tr>
<tr>
<td>3.2.1 Instrumentation</td>
<td>32</td>
</tr>
<tr>
<td>3.2.2 Test procedure</td>
<td>34</td>
</tr>
<tr>
<td>Chapter 4: Experimental Studies and Results</td>
<td>36</td>
</tr>
</tbody>
</table>
4.1 Shear Resistance ..36
 4.1.1 m and k method ...36
 4.1.2 Partial connection method $\tau_{u,Rd}$...37
4.2 Test Results ..39
 4.2.1 Results for test group 1 – A1 specimens (single width panel)41
 4.2.2 Results for test group 2 – A2 specimens (single width panel)48
 4.2.3 Results for test group 3 – LA1 specimen (Lapped single width panel)54
 4.2.4 Results for test group 4 – LA2 specimen ..60
 4.2.5 Results for test group 5 – LFA1 specimen (double width panel)65
 4.2.6 Results for test group 6 – LFA2 specimen (double width panel)70

Chapter 5 : Analysis of Test Results and Parametric Study 76

 5.1 General observations ..76
 5.1.1 Specimens in shorter shear span (A1, LA1 and LFA1 specimens)76
 5.1.2 Specimens in longer shear span (A2, LA2 and LFA2 specimens)82
 5.1.3 Longer shear span specimens verse shorter shear span specimens87
 5.2 Parametrical Study ..88
 5.2.1 Evaluation of shear bond strength by m-k method88
 5.2.2 Evaluation of shear bond strength by partial shear connection (PSC)93
 5.3 Comparison of Parameters and Test Results ...96
 5.3.1 Comparison of performance test results ...96
 5.3.2 Comparison of longitudinal shear strength ...104
 5.4 Discussion ..106
 5.4.1 Effects on configuration of composite slab specimen to structural performance from experiment ...106
 5.4.2 Discussion on the most effective configuration and combination of composite slabs for experiments ...108

Chapter 6 : Summary, Conclusions and Recommendations 113

 6.1 Summary ..113
 6.2 Conclusions ..114
 6.3 Recommendations ..117

Reference 118

APPENDIX A: Test Reports of Specimens 122

APPENDIX B: Load Chart for Specimen 164

APPENDIX C: Configuration of Instrumentation 202
List of Tables

Table 3.1 Characteristic of composite slab specimens ... 25
Table 4.1 Material test results ... 39
Table 4.2 Significant load values .. 40
Table 4.3 Significant deflection values ... 41
Table 5.1 Significant load values for comparison of specimen in shorter shear span 79
Table 5.2 Significant deflection values of specimen in shorter shear span 79
Table 5.3 Significant load values for comparison of specimen in longer shear span 84
Table 5.4 Significant deflection values of specimen in longer shear span 84
Table 5.5 parameters to plot m-k curve .. 88
Table 5.6 Comparison of m-k values with different configuration of decking 91
Table 5.7 Parameters of m-k method for composite slab specimens 92
Table 5.8 Parameters of PSC method for composite slab specimens 95
Table 5.9 Comparison of ultimate performance of specimens in shorter shear span 100
Table 5.10 Comparison of ultimate performance of specimens in longer shear span 101
Table 5.11 Comparison of serviceability performance of specimens in shorter shear span ... 102
Table 5.12 Comparison of serviceability performance of specimens in longer shear span ... 103
Table 5.13 Comparison of longitudinal shear strength by m-k 104
Table 5.14 Comparison of longitudinal shear strength by PSC method 104
Table 5.15 Comparison of longitudinal shear strength by m-k and PSC method 105
Table 5.16 Comparison of calculated failure load and test load for LFA1 specimen 110
Table 5.17 Comparison of calculated failure load and test load for LFA2 specimen 111
List of Figures

Figure 1.1 A typical example of composite slab construction .. 2
Figure 1.2 Detail and examples of profiled steel decking used in composite slabs 3
Figure 2.1 Two typical behavior modes of composite slabs .. 11
Figure 2.2 Failure modes of simply supported composite slab 12
Figure 3.1 Profiled steel decking used in the study ... 23
Figure 3.2 Arrangement of specimen of composite slabs .. 24
Figure 3.3 Formwork for composite slabs ... 26
Figure 3.4 Formwork for composite slabs ... 26
Figure 3.5 Strain gauges .. 27
Figure 3.6 Checking strain gauge ... 27
Figure 3.7 Wiring arrangement .. 27
Figure 3.8 Protection of strain gauges by SB tape ... 27
Figure 3.9 Steel mesh reinforcement .. 28
Figure 3.10 Steel mesh reinforcement ... 28
Figure 3.11 Specimens before concreting .. 29
Figure 3.12 Concreting ... 29
Figure 3.13 Concreting and vibrating ... 29
Figure 3.14 Smooth the concrete surface .. 29
Figure 3.15 Concrete test cubes ... 30
Figure 3.16 Completion of concreting ... 30
Figure 3.17 Concrete curing ... 30
Figure 3.18 Completion of concreting works .. 30
Figure 3.19 Composite slab test setup ... 31
Figure 3.20 View of loading frame ... 31
Figure 3.21 View of composite slab and spreader beams .. 31
Figure 3.22 View of test setup .. 31
Figure 3.23 Experimental set-up for composite slab (specimen A1/LA1/LFA1) 32
Figure 3.24 LVDT at shear span and mid span of slab ... 33
Figure 3.25 Dial gauge at two end of slab ... 33
Figure 3.26 Concrete strain gauge on top of slab ... 33
Figure 3.27 Strain gauges at the bottom of decking .. 33
Figure 3.28 Close up of strain gauges at the bottom of decking 34
Figure 3.29 Load cell under the loading rig ... 34
Figure 3.30 Hydraulic system .. 34
Figure 3.31 Computer for data recording ... 34
Figure 4.1 Evaluation of test results by linear regression line 37
Figure 4.2 Determination of the degree of shear connection from M_{test} 38
Figure 4.3 Early crack below the loading point (A1S) ... 42
Figure 4.4 Curling of edge rib due to excessive loading (A1S) 42
Figure 4.5 Major crack patterns below the loading point (A1S1) 42
Figure 4.6 Horizontal cracks along shear span (A1S1) ... 42
Figure 4.53 Major cracks below loading point at ultimate loading stage (LA2C1) 62
Figure 4.54 Final condition of slab, but no sudden collapse (LA2C1) 62
Figure 4.55 Load versus displacement curve at mid-span for LA2 specimens 63
Figure 4.56 Load versus end slip curve for LA2 specimens .. 63
Figure 4.57 Load versus rib strain curve at mid-span for LA2 specimens 64
Figure 4.58 Load versus bottom deck strain curve at mid-span for LA2 specimens 65
Figure 4.59 First crack below the loading point (LFA1S) ... 66
Figure 4.60 Curling of outgoing rib as load increasing (LFA1S) 66
Figure 4.61 Longitudinal shear cracks along mid-span (LFA1S) 66
Figure 4.62 Curling of edge rib and web on mid-span at ultimate state (LFA1S) 66
Figure 4.63 De-bonding of profiled decking at ultimate state. (LFA1C1) 66
Figure 4.64 Curling of decking along shear span at ultimate state. (LFA1C1) 66
Figure 4.65 Curling of profiled decking along mid-span at ultimate state. (LFA1C1) 67
Figure 4.66 De-bonding of decking along shear span at ultimate state. (LFA1C2) 67
Figure 4.67 Curling of profiled decking along mid-span at ultimate state. (LFA1C2) 67
Figure 4.68 Final condition of slab but no sudden collapse. (LFA1C1) 67
Figure 4.69 Load versus displacement curve at mid-span for LFA1 specimens 68
Figure 4.70 Load versus end slip curve for LFA1 specimens .. 68
Figure 4.71 Load versus rib strain curve at mid-span for LFA1 specimens 69
Figure 4.72 Load versus bottom deck strain curve at mid-span for LFA1 specimens 69
Figure 4.73 Propagated shear cracks under loading pad and de-bonding and buckling of outgoing rib of decking (LFA2S) ... 70
Figure 4.74 Development of shear cracks under different loading along shear span on concrete surface (LFA2C1) .. 71
Figure 4.75 Crack patterns on mid-span of slab (LFA2C2) ... 71
Figure 4.76 Buckling of outgoing rib under the loading pad (LFA2C1) 71
Figure 4.77 Longitudinal shear cracks on shear span (LFA2S) 72
Figure 4.78 Higher slippage of slab ends (LFA2S) ... 72
Figure 4.79 Major shear cracks and longitudinal of cracks along shear span (LFA2S) ... 72
Figure 4.80 Crack patterns on shear span of slab (LFA2C2) ... 72
Figure 4.81 De-bonding of profiled decking at ultimate state (LFA2C1) 72
Figure 4.82 Final condition of slab but no sudden collapse (LFA2C1) 72
Figure 4.83 Load versus displacement curve at mid-span for LFA2 specimens 73
Figure 4.84 Load versus end slip curve for LFA2 specimens .. 74
Figure 4.85 Load versus rib strain curve at mid-span for LFA2 specimens 75
Figure 4.86 Load versus bottom deck strain curve at mid-span for LFA2 specimens 75
Figure 5.1 Combination of load-displacement curves among specimens at mid span section ($L_s=450mm$) ... 80
Figure 5.2 Combination of load-slip curves among specimens at mid span section ($L_s=450mm$) .. 80
Figure 5.3 Combination of load-strain curves on ribs among specimens at mid span section ($L_s=450mm$) .. 81
Figure 5.4 Combination of load-slip curves on bottom of decking among specimens at mid span section ($L_s=450mm$) ... 81
Figure 5.5 Combination of load-displacement curves among specimens at mid span section ($L_s=850mm$) ... 85
Figure 5.6 Combination of load-slip curves among specimens at mid span section \((L_s=850\text{mm}) \) .. 85
Figure 5.7 Combination of load-strain curves on ribs among specimens at mid span section \((L_s=850\text{mm}) \) .. 86
Figure 5.8 Combination of load-slip curves on bottom of decking among specimens at mid span section \((L_s=850\text{mm}) \) .. 86
Figure 5.9 \(m-k \) curve of A1 and A2 specimens .. 89
Figure 5.10 \(m-k \) curve of LFA1 and LFA2 specimens ... 89
Figure 5.11 \(m-k \) curve of LA1 and LA2 specimens .. 90
Figure 5.12 Comparison of \(m-k \) curve with different configuration of decking 90
Figure 5.13 Partial-interaction diagram for A1 and A2 specimens 94
Figure 5.14 Partial-interaction diagram for LFA1 and LFA2 specimens 94
Figure 5.15 Partial-interaction diagram for LFA1 and LFA2 specimens 94
Figure 5.16 Cross section of specimens of composite slab for testing 96
Figure 5.17 Condition of profiled steel decking in composite construction 108
Figure 5.18 Sub-division of elements for composite slab specimens 110
Notation

\(m\) Empirical parameters for design shear resistance

\(k\) Empirical factor for design shear resistance

\(L\) Span; length

\(L_s\) Shear span

\(L_o\) Length of overhang

\(b\) Width of slab

\(A_p\) Cross-sectional area of profiled steel decking

\(d_p\) Distance between the centroidal axis of the profiled steel sheeting and the extreme fibre of the composite slab in compression

\(\gamma_{vs}\) Partial safety factor for the ultimate limit state.

\(W_t\) Measured failure load

\(f_y\) Nominal value of yield strength of profiled steel decking

\(V_{1, Rd}\) Design value of the resistance to shear

\(N_{cf}\) Design value Design value of the compressive normal force in the concrete flange with full shear connection

\(\tau_u\) Value of longitudinal shear strength of a composite slab determined from testing

\(\eta\) Degree of shear connection

\(\tau_{u, Rd}\) Design value of longitudinal shear strength of a composite slab

\(\tau_{u, Rk}\) Characteristic value of longitudinal shear strength of a composite slab

\(W_{1, crack}\) The first crack load

\(W_{1, slip}\) The first end slip load

\(W_{2, slip}\) The first and second end slip load

\(W_{0,1mm}\) The load in which end slip is equal to 0.1mm

\(W_{L/250}\) The load for a mid-span on or before deflection of \(L/250\)

\(W_{L/50}\) The load for a mid-span on or before deflection of \(L/50\)

\(V_t\) Support reaction

\(\delta_{wt}\) The deflection of mid span at maximum applied load

\(\delta_{max}\) The mid span deflection at the end of test
\(\delta_{1\text{crack}} \) The mid span deflection when first crack
\(\delta_{1\text{slip}} \) The mid span deflection when the first slip
\(S_{\text{max}} \) Maximum slip at slab failure
\(D_{1\text{,crack}} \) Distributed load on composite slab at first crack
\(D_{0.1\text{mm}} \) Distributed load on composite slab at or close to 0.1mm end slip