An Adaptive Low DC-Voltage Controlled LC Coupling Hybrid Active Power Filter in Three-Phase Four-Wire Power Systems

by

LAM Chi-Seng, Terence

Doctor of Philosophy in Electrical and Electronics Engineering

2012

Faculty of Science and Technology University of Macau
An Adaptive Low DC-Voltage Controlled LC Coupling Hybrid Active Power Filter in Three-Phase Four-Wire Power Systems

by

LAM Chi-Seng, Terence

SUPERVISOR: Prof. HAN Ying-Duo

CO-SUPERVISOR: Prof. WONG Man-Chung

DEPARTMENT: Department of Electrical and Computer Engineering

Doctor of Philosophy in Electrical and Electronics Engineering

2012

Faculty of Science and Technology

University of Macau
ACKNOWLEDGMENTS

This research work was carried out in the Power Electronics Laboratory (PELab), Faculty of Science and Technology (FST) of University of Macau (UM). I would like to express my gratitude to the Science and Technology Development Fund (FDCT), Macao SAR Government and Research Committee (RC) of University of Macau for their financial supports for this work. Many people have contributed to the completion of this thesis work. First of all, I would like to express my hearty and profound gratitude to my two supervisors - Prof. Han Ying-Duo and Prof. Wong Man-Chung, for having opened my vision and brought me into this challenging and worthwhile research realm in power electronics. I especially appreciate them for their immensely inspirational and patient guidance, continuous support throughout both my M.Sc. and Ph.D. studies.

I acknowledge Prof. Rui Martins, Prof. Chen Chen, Prof. Chung Chi-Yung, Prof. Dong Ming-Chui and Prof. Vai Mang-I for being my oral defense examination committee members.

An extraordinary word of thanks must be delivered to Mr. Choi Wai-Hei and Mr. Cui Xiao-Xi for their great assistance in implementing and testing the experimental prototype and also numerous technical discussions that have broadened my knowledge. My sincere thanks also go to my friends, Mr. Ng Fan, Mr. Zhan Ming-Hui and Mr. Tai Sio-Un who gave me much help during my M.Sc. study and all the past and present colleagues in PELab.
I would like to express my special thanks to the professors from the Faculty of Science and Technology (FST) – Dr. Wong Chi-Kong, Dr. Dai Ning-Yi and Dr. Mak Peng-Un – for their kindly help in many ways smoothing the progress of my M.Sc. and Ph.D. study.

Last, but certainly not least, I wish to render my utmost gratitude to my parents, two brothers, relatives and friends who gave me endless support, care and encouragement.
ABSTRACT

With the increase use of power electronics devices (nonlinear loads) and motor loadings, low-cost low-loss high-performance shunt current quality compensators (SCQCs) are highly demanded by power customers to solve current quality problems caused by those loadings. With the comprehensive consideration of the cost, performance, loss and anti-resonance capability, hybrid active power filter (HAPF) can be applied. Based on HAPF literatures review, a LC coupling HAPF (LC-HAPF) is chosen because it can offer the lowest initial cost, size, weight and has potential to provide dynamic reactive power compensation capability.

However, based on the state-of-the-art LC-HAPF systems recently, the following points have not been investigated and discussed:

1) Operation criteria of pulse width modulation (PWM) techniques for LC coupling voltage source inverter (VSI) (i.e. LC-HAPF) has not been studied at this moment, as the existing PWM techniques were traditionally developed based on linear L coupling VSI.

2) Existing LC-HAPFs do not provide dynamic reactive power compensation.

3) To reduce the LC-HAPF system switching loss, the usual method is to apply soft-switching technique. However, this would increase the system initial cost.

4) The minimum inverter rating analysis of the LC-HAPF is lack of study.

In this thesis, the three-phase four-wire LC-HAPF linear operation region requirement under hysteresis PWM control is proposed. Then the LC-HAPF dynamic reactive power control is investigated. To reduce its switching loss and switching noise during dynamic reactive power compensation, a novel adaptive dc-link voltage control scheme is proposed. By adding a tuned coupling neutral inductor, it is possible
to further reduce its minimum dc-link voltage (rating) requirement, so as further reducing switching loss and switching noise. Finally, an adaptive low dc-link voltage 220V-10kVA three-phase four-wire LC-HAPF experimental prototype for dynamic reactive power, current harmonics and neutral current compensation is developed, built and tested, which verified all the analyses and proposed solutions, in which the inverter rating of the LC-HAPF can be reduced by more than 75% of the minimum inverter rating requirement of the active power filter (APF).
TABLE OF CONTENTS

Acknowledgments ... i
Abstract .. iii
Table of Contents ... v
List of Figures .. xi
List of Tables .. xix
List of Abbreviations ... xxii

CHAPTER 1: Introduction ... 1
1.1 General Background .. 1
1.1.1 Power Quality Issues ... 1
1.1.2 Standards of Power Quality Issues ... 3
1.1.3 Power Consumption Distribution and Main Power Quality Problems in Macau ... 4
1.1.3.1 Low Power Factor – Reactive Current Problem ... 7
1.1.3.2 Current Harmonics ... 7
1.1.3.3 Excessive Neutral Current ... 8
1.2 Specific Background .. 9
1.2.1 Hybrid Active Power Filters (HAPFs) ... 11
1.2.2 HAPF Topology 1 – Series APF and Shunt PPF [1.3] – [1.8] 11
1.2.3 HAPF Topology 2 – Shunt APF and Shunt PPF [1.16] – [1.20] 12
1.2.4 HAPF Topology 3 – APF in Series with Shunt PPF [1.3], [1.24] – [1.32] ... 14
1.2.5 Review of State-Of-The-Art Three-Phase LC-HAPF Topology 17
1.3 Research Goals and Objectives .. 18
1.4 Research Methodology and Design ... 19
1.4.1 Research Study on A Three-Phase Four-Wire Center-Split LC-HAPF Circuit Configuration ... 19
1.4.2 Algorithm for LC-HAPF Reference Compensating Current Determination .. 21
1.4.2.1 LC-HAPF Reference Reactive and Harmonic Compensating Current Calculation Based on Single-Phase Instantaneous PQ Theory .. 21
3.2.2 Mathematical Modeling of a Three-Phase Four-Wire Center-Split LC-HAPF and APF ... 61

3.3 Hysteresis PWM Control for LC-HAPF .. 62

3.3.1 Nonlinearity of LC-HAPF Inverter Current Slope 62

3.3.2 Quasi-linear Limit T_{limit} and Linear Limit T_{linear} for LC-HAPF Inverter Current Slope .. 65

3.3.3 Relationship among Hysteresis Band H, Switching Frequency f_{sw} and DC-Link Voltage V_{dc1} of Linearized LC-HAPF 68

3.3.4 Single-Phase Simulation and Experimental Results for LC-HAPF Inverter Current Slope Linearization Analysis 70

3.4 LC-HAPF Linearization Study Verification under Three-Phase Four-Wire Power Quality Compensator Application 75

3.4.1 Determination of Final Sampling Time T_{final} and Hysteresis Band H_{final} .. 76

3.4.2 Simulation and Experimental Verifications for LC-HAPF Linearization Study under Three-Phase Four-Wire Power Quality Compensator Application .. 76

3.4.3 Simulation Results .. 78

3.4.4 Experimental Results ... 79

3.5 Summary .. 85

References ... 87

CHAPTER 4: Proposed Adaptive DC-link Voltage Controlled LC-HAPF for Reactive Power Compensation .. 89

4.1 Introduction ... 89

4.2 Single-Phase Fundamental Equivalent Circuit Model of LC-HAPF 90

4.3 LC-HAPF Required Minimum DC-Link Voltage with Respect to Loading Reactive Power .. 94

4.3.1 Full-Compensation By Passive Part .. 95

4.3.2 Under-Compensation By Passive Part ... 96

4.3.3 Over-Compensation By Passive Part .. 96

4.4 Proposed Adaptive DC-link Voltage Controller for A Three-Phase Four-Wire LC-HAPF ... 98
4.4.1 Instantaneous Power Compensation Control Block 99
4.4.2 Proposed Adaptive DC-Link Voltage Control Block 99
4.4.3 Final Reference Compensating Current and PWM Control Block 102

4.5 Simulation and Experimental Verifications of the Proposed Adaptive
DC-Link Voltage Controller for the Three-Phase Four-Wire LC-HAPF .. 103
4.5.1 Under-Compensation by Passive Part Situation ($L_{c1} = 6\text{mH}, C_{c1} = 140\mu\text{F}$) ... 106
4.5.2 Over-Compensation by Passive Part Situation ($L_{c1} = 6\text{mH}, C_{c1} = 190\mu\text{F}$) ... 107
4.5.3. Comparison between Fixed and Adaptive DC-Link Voltage Control
... 111
4.5.4. Adaptive DC-Link Voltage Controlled LC-HAPF under
Unbalanced Loading Situation .. 114

4.6 Summary .. 117
References .. 118

CHAPTER 5: Minimum Inverter Capacity Design for Three-Phase Four-Wire
LC-HAPF ... 120
5.1 Introduction .. 120
5.2 Mathematical Modeling of A Two-Level Three-Phase Four-Wire
Center-Split LC-HAPF in D-Q-0 Coordinate .. 122
5.2.1 Equivalent Circuit Models of A Three-Phase Four-Wire LC-HAPF
in d-q-0 Coordinate ... 122
5.2.2 Passive Part Filtering Characteristics Analysis of the LC-HAPF
without or with Coupling Neutral Inductor ... 125
5.2.3 Resonant Frequency Selection for Passive LC without or with
Coupling Neutral Inductor .. 126

5.3 Minimum Inverter Capacity Analysis of A Three-Phase Four-Wire
Center-Split LC-HAPF ... 128
5.4 Simulation and Experimental Verifications for Inverter Capacity
Reduction Analysis of the Three-Phase Four-Wire LC-HAPF with
Coupling Neutral Inductor .. 135
5.4.1 Balanced Loading Situation .. 136
LIST OF FIGURES

Fig. 1.1.1 Total electricity consumption (GWh) in Macau between 1996 and 2010... 5
Fig. 1.1.2 General facilities installed in commercials buildings, hotels and
recreation, and public administrative buildings. .. 5
Fig. 1.1.3 Phase and neutral current RMS measurement data for one building........ 8
Fig. 1.2.1 Parallel capacitor bank (CB). .. 10
Fig. 1.2.2 Passive power filter (PPF). .. 10
Fig. 1.2.3 Active power filter (APF). ... 10
Fig. 1.2.4 Three general types of HAPF topology: (a) HAPF topology 1 – series
APF and shunt PPF, (b) HAPF topology 2 – shunt APF and shunt PPF,
and (c) HAPF topology 3 – APF in series with shunt PPF. 11
Fig. 1.2.5 HAPF topology 1 – series APF and shunt PPF proposed by: (a) F. Z. Peng,
H. Akagi, A. Nabae in 1988 [1.4], and (b) P. Salmeron, S.-P. Litran in
2010 [1.8] .. 12
Fig. 1.2.6 HAPF topology 2 – shunt APF and shunt PPF proposed by: (a) S.
Khositkasame, S. Sangwongwanich in 1997 [1.16], (b) H.-K. Chiang,
B.-R. Lin, K.-T. Yang, K.-W. Wu in 2005 [1.18], and (c) V. F.
Fig. 1.2.7 HAPF topology 3 – APF in series with shunt PPF proposed by: (a) H.
in 2003 [1.24], and (c) S. Srianthumrong, H. Akagi in 2003 [1.27]....... 15
Fig. 1.4.1 System configuration of a three-phase four-wire center-split LC-HAPF. 20
Fig. 1.4.2 Control block diagram of indirect current control. 25
Fig. 1.4.3 Control block diagram of hysteresis band PWM control. 27
Fig. 1.4.4 Working principle waveforms of hysteresis band PWM control. 27
Fig. 1.4.5 Control block diagram of ramp comparison PWM control. 28
Fig. 1.4.6 Working principle waveforms of ramp comparison PWM control. 28
Fig. 1.4.7 Reactive and harmonic reference compensating current deduction and
PWM control block diagram for the three-phase four-wire LC-HAPF. ... 29
Fig. 1.6.1 Organization of the thesis. .. 32
Fig. 2.2.1 LC-HAPF single-phase harmonic circuit model. 39
Fig. 2.2.2 LC-HAPF single-phase harmonic circuit model: (a) \(v_{sth} = 0 \) and only
Fig. 2.2.3 LC-HAPF single-phase harmonic circuit model: (a) $i_{Lxh} = 0$ and only v_{sxh} is considered, (b) a harmonic equivalent circuit model due to v_{sxh} only................................. 39

Fig. 2.3.1 Capability to prevent the parallel resonance between the PPF and the impedance of the power system: (a) when only PPF is utilized

\[
v_{invsh} = K \cdot i_{sxh} = 0, K = 0
\]

(b) LC-HAPF is employed ($K = 50$).................. 45

Fig. 2.3.2 Simulation results for the parallel resonance prevention capability: (a) when only PPF is utilized, (b) LC-HAPF is employed......................... 47

Fig. 2.3.3 Capability to prevent the series resonance between the PPF and the impedance of the power system: (a) when only PPF is utilized

\[
v_{invsh} = K \cdot i_{sxh} = 0, K = 0
\]

(b) LC-HAPF is employed ($K = 50$).................. 47

Fig. 2.3.4 Simulation results for the series resonance prevention capability: (a) when only PPF is utilized, (b) LC-HAPF is employed......................... 49

Fig. 2.3.5 Capability to improve the filtering performances of the PPF ($K = 0$, $K = 25$, $K = 50$) due to: (a) nonlinear load current i_{Lxh}, (b) distorted system voltage v_{sxh}... 50

Fig. 2.3.6 Simulation results for improving the filtering effects of the PPF: (a) when only PPF is utilized, (b) LC-HAPF is employed......................... 52

Fig. 2.3.7 Capability to enhance the system robustness due to nonlinear load current i_{Lxh}: (a) when only PPF is utilized ($v_{invsh} = K \cdot i_{sxh} = 0, K = 0$), (b) LC-HAPF is employed ($K = 50$)... 53

Fig. 2.3.8 Capability to enhance the system robustness due to distorted system voltage v_{sxh}: (a) when only PPF is utilized ($v_{invsh} = K \cdot i_{sxh} = 0, K = 0$), (b) LC-HAPF is employed ($K = 50$).......................... 53

Fig. 2.3.9 Simulation results for enhancing the system robustness: (a) when only PPF is utilized, (b) LC-HAPF is employed.......................... 55

Fig. 3.2.1 A LC-hybrid active power filter (LC-HAPF).......................... 60

Fig. 3.2.2 An active power filter (APF).. 60

Fig. 3.3.1 Slope of the LC-HAPF inverter current i_{cx} under hysteresis PWM: (a) nonlinear region, (b) quasi-linear region, and (c) linear region........... 64
Fig. 3.3.2 Graphs of: (a) $A = \cos \omega t$, at different time t and $R_{c1}=0$, (b) $\left| \frac{d i_{c1}}{d t} \right|_{\text{error}}$ at different time t and $R_{c1}=0$, and (c) f_{sw} versus $\left| \frac{d i_{c1}}{d t} \right|_{\text{error}}$. 67

Fig. 3.3.3 Hysteresis current-controlled PWM for LC-HAPF: (a) switching scheme block diagram for one phase, and (b) current and voltage waveforms before and after linearization. ... 69

Fig. 3.3.4 Single-phase model for upper switch T_{1x} at different t_{on} interval: (a) LC-HAPF, (b) APF.. 71

Fig. 3.3.5 Simulated i_{c1} of LC-HAPF single-phase model at different t_{on} interval and $E_1=20V$... 73

Fig. 3.3.6 Simulated i_{c2} of APF single-phase model at different t_{on} interval and $E_2=20V$.. 73

Fig. 3.3.7 Experimental i_{c1} of LC-HAPF single-phase model at different t_{on} interval and $E_1=20V$.. 74

Fig. 3.3.8 Experimental i_{c2} of APF single-phase model at different t_{on} interval and $E_2=20V$.. 74

Fig. 3.4.1 Hysteresis PWM control under H_{linear} based on: (a) previous constant i_{c1}^* assumption, and (b) inconstant i_{c1} consideration......... 75

Fig. 3.4.2 Simulated i_{c1}^* and i_{c1} for LC-HAPF at different operation regions........ 81

Fig. 3.4.3 Experimental i_{c1}^* and i_{c1} for LC-HAPF at different operation regions. 81

Fig. 3.4.4 Simulated i_{c1} before and after LC-HAPF compensation at different operation regions: (a) before compensation, (b) nonlinear region ($H = 1.25A$), (c) quasi-linear region ($H = 0.50A$), and (d) linear region ($H = 0.156A$).. 83

Fig. 3.4.5 Experimental i_{c1} before and after LC-HAPF compensation at different operation regions: (a) before compensation, (b) nonlinear region ($H = 1.25A$), (c) quasi-linear region ($H = 0.50A$), and (d) linear region ($H = 0.156A$).. 84

Fig. 3.5.1 Flowchart for LC-HAPF determining: (a) final sampling time T_{final} and hysteresis band H_{final}, (b) quasi-linear limit T_{lim}, H_{lim}, and (c) linear limit T_{linear}, H_{linear} .. 86

Fig. 4.2.1 LC-HAPF single-phase fundamental equivalent circuit model............. 91
Fig. 4.2.2 Q_{cx} per V_x^2 with respect to different R_{Vd} for: (a) APF, and (b) LC-HAPF. ... 93
Fig. 4.3.1 LC-HAPF single-phase fundamental phasor diagram under inductive loading during: (a) full-compensation, (b) under-compensation, and (c) over-compensation by passive part. ... 95
Fig. 4.4.1 Proposed adaptive dc-link voltage control block diagram for the three-phase four-wire LC-HAPF. ... 102
Fig. 4.5.1 Q_{Lsf} for both under-compensation and over-compensation by passive part cases: (a) simulated Q_{Lsf}, and (b) experimental Q_{Lsf}. 105
Fig. 4.5.2 LC-HAPF simulated dynamic process during under-compensation by passive part: (a) adaptive V_{dc1u}, V_{dc1L}, (b) Q_{sxf} of phase b, (c) DPF of phase b before and after LC-HAPF starts operation, and (d) DPF of phase b before and after the 2nd loading is connected. 109
Fig. 4.5.3 LC-HAPF experimental dynamic process during under-compensation by passive part: (a) adaptive V_{dc1u}, V_{dc1L}, (b) Q_{sxf} of phase b, (c) DPF of phase b before and after LC-HAPF starts operation, and (d) DPF of phase b before and after the 2nd loading is connected. 109
Fig. 4.5.4 LC-HAPF simulated dynamic process during over-compensation by passive part: (a) adaptive V_{dc1u}, V_{dc1L}, (b) Q_{sxf} of phase b, (c) DPF of phase b before and after LC-HAPF starts operation, and (d) DPF of phase b before and after the 2nd loading is connected. 110
Fig. 4.5.5 LC-HAPF experimental dynamic process during over-compensation by passive part: (a) adaptive V_{dc1u}, V_{dc1L}, (b) Q_{sxf} of phase b, (c) DPF of phase b before and after LC-HAPF starts operation, and (d) DPF of phase b before and after the 2nd loading is connected. 110
Fig. 4.5.6 LC-HAPF whole simulated dynamic process during under-compensation by passive part: (a) fixed V_{dc1u}, V_{dc1L}=30V, (b) Q_{sxf} of phase b, (c) DPF of phase b before and after LC-HAPF starts operation, and (d) DPF of phase b before and after the 2nd loading is connected. 113
Fig. 4.5.7 LC-HAPF whole experimental dynamic process during under-compensation by passive part: (a) fixed V_{dc1u}, V_{dc1L}=30V, (b) Q_{sxf} of phase b, (c) DPF of phase b before and after LC-HAPF starts operation, and (d) DPF of phase b before and after the 2nd loading is connected... 113
Fig. 5.4.3 Simulated i_{cx} waveform and its spectrum of phase a: (a) $V_{dc1}=90V$ ($L_{cn}=0$), and (b) $V_{dc1}=45V$ ($L_{cn}=5mH$). ... 143

Fig. 5.4.4 Experimental i_{cx} waveform and its spectrum of phase a: (a) $V_{dc1}=90V$ ($L_{cn}=0$), and (b) $V_{dc1}=45V$ ($L_{cn}=5mH$)... 143

Fig. 5.4.5 Simulated i_{sx} and i_{sn} before and after LC-HAPF compensation during unbalanced loading situation: (a) before compensation, (b) after compensation with $V_{dc1}=90V$ ($L_{cn}=0$), (c) after compensation with $V_{dc1}=130V$ ($L_{cn}=0$), (d) after compensation with $V_{dc1}=90V$ ($L_{cn}=5mH$). 146

Fig. 6.2.1 System configuration of the 220V-10kVA LC-HAPF experimental prototype... 151

Fig. 6.2.2 The 220V-10kVA LC-HAPF experimental prototype testing environment.. 152

Fig. 6.2.3 The 220V-10kVA LC-HAPF experimental prototype under balanced loading situation... 153

Fig. 6.2.4 The 220V-10kVA LC-HAPF experimental prototype under unbalanced loading situation... 153

Fig. 6.2.5 Hardware circuit diagram of PPF. ... 155

Fig. 6.2.6 Summary of power semiconductor device capabilities. ... 156

Fig. 6.2.7 Dual IPM module: (a) appearance, (b) circuit diagram. ... 157

Fig. 6.2.8 IGBT driver board: (a) schematic diagram, (b) PCB... 158

Fig. 6.2.9 Hardware connection between IGBT power switches and drivers......... 158

Fig. 6.2.10 Transducers with signal condition boards: (a) current board, (b) voltage board ... 159

Fig. 6.2.11 Schematic diagram of the signal conditioning circuit......................... 160

Fig. 6.2.12 Overall current and voltage transducers with signal conditioning boards for the LC-HAPF experimental prototype. ... 161

Fig. 6.2.13 DSP program flowchart of the LC-HAPF: (a) main program, (b) interrupt service routine. ... 163

Fig. 6.2.14 The DSP controller for the LC-HAPF experimental prototype. 163

Fig. 6.3.1 Before LC-HAPF compensation under balanced loading situation: (a) Q_{sxf}, (b) v_x and i_{sx} when the 1st loading is connected, and (c) v_x and i_{sx} when the 1st and 2nd loading are connected. ... 165

Fig. 6.3.2 Before LC-HAPF compensation under unbalanced loading situation: (a) Q_{sxf}, (b) v_x and i_{sx} when the 1st loading is connected, and (c) v_x and i_{sx}
when the 1st and 2nd loading are connected... 165

Fig. 6.3.3 Reference inverter current in DSP and inverter current: (a) during 1st inductive loading connected \((V_{dc,1u}, V_{dc,1L} = 50V) \), and (b) during the 1st and 2nd inductive loadings are connected \((V_{dc,1u}, V_{dc,1L} = 75V) \) 170

Fig. 6.3.4 LC-HAPF whole experimental dynamic compensation process with fixed dc-link voltage control scheme under balanced loading situation: (a) \(V_{dc,1u}, V_{dc,1L} \), (b) \(Q_{sxf} \), (c) \(v_x \) and \(i_{sx} \) of phase \(a \) after LC-HAPF starts operation, and (d) \(v_x \) and \(i_{sx} \) of phase \(a \) after the 2nd loading is connected. .. 171

Fig. 6.3.5 LC-HAPF whole experimental dynamic compensation process with adaptive dc-link voltage control scheme under balanced loading situation: (a) \(V_{dc,1u}, V_{dc,1L} \), (b) \(Q_{sxf} \), (c) \(v_x \) and \(i_{sx} \) of phase \(a \) after LC-HAPF starts operation, and (d) \(v_x \) and \(i_{sx} \) of phase \(a \) after the 2nd loading is connected. ... 173

Fig. 6.3.6 LC-HAPF whole experimental dynamic compensation process with adaptive dc-link voltage control scheme under unbalanced loading situation: (a) \(V_{dc,1u}, V_{dc,1L} \), (b) \(Q_{sxf} \), (c) \(v_x \) and \(i_{sx} \) of phase \(a \) after LC-HAPF starts operation, and (d) \(v_x \) and \(i_{sx} \) of phase \(a \) after the 2nd loading is connected. .. 173

Fig. 6.3.7 Experimental and frequency spectrum for \(i_{cx} \) of phase \(a \) under balanced loading situation with: (a) a fixed \(V_{dc,1u}, V_{dc,1L} = 75V \), and (b) adaptive dc-link voltage control. .. 176

Fig. 6.3.8 LC-HAPF whole experimental dynamic compensation process with adaptive dc-link voltage control scheme and \(L_{cn} \) under balanced loading situation: (a) \(V_{dc,1u}, V_{dc,1L} \), (b) \(Q_{sxf} \), (c) \(v_x \) and \(i_{sx} \) of phase \(a \) after LC-HAPF starts operation, and (d) \(v_x \) and \(i_{sx} \) of phase \(a \) after the 2nd loading is connected. ... 177

Fig. 6.3.9 LC-HAPF whole experimental dynamic compensation process with adaptive dc-link voltage control scheme and \(L_{cn} \) under unbalanced loading situation: (a) \(V_{dc,1u}, V_{dc,1L} \), (b) \(Q_{sxf} \), (c) \(v_x \) and \(i_{sx} \) of phase \(a \) after LC-HAPF starts operation, and (d) \(v_x \) and \(i_{sx} \) of phase \(a \) after the 2nd loading is connected. ... 177

Fig. 6.3.10 Experimental and frequency spectrum for \(i_{cx} \) of phase \(a \) under balanced
loading situation with: (a) adaptive dc-link voltage control, and (b) adaptive dc-link voltage control with L_{cn} .. 179

Fig. 6.3.11 LC-HAPF whole experimental dynamic compensation process with adaptive dc-link voltage control scheme and without L_{cn} under unbalanced loading situation: (a) before and after LC-HAPF starts operation during 1st loading connected, (b) before and after the 2nd loading is connected, (c) before and after the 2nd loading is disconnected. .. 180

Fig. 6.3.12 LC-HAPF whole experimental dynamic compensation process with adaptive dc-link voltage control scheme and L_{cn} under unbalanced loading situation: (a) before and after LC-HAPF starts operation during 1st loading connected, (b) before and after the 2nd loading is connected, (c) before and after the 2nd loading is disconnected. .. 180

Fig. A.1 The 55V-1.65kVA LC-HAPF experimental prototype................................. 187
LIST OF TABLES

Table 1.1 Power electronics and motor applications .. 2
Table 1.2 Power quality regulations in Macau .. 3
Table 1.3 Voltage harmonic distortion limits .. 4
Table 1.4 Current harmonic distortion limits .. 4
Table 1.5 Electricity consumption distributions in Macau in year 2004 4
Table 1.6 Electricity consumption distributions in Macau in year 2006 5
Table 1.7 Power factor measurement data for 7 buildings in Macau 7
Table 1.8 Total current harmonic distortion (THDi) measurement data for 7 buildings in Macau ... 7
Table 1.9 Operational functions for shunt current quality compensators in distribution power system .. 10
Table 1.10 Characteristics and comparisons of three general HAPF topologies 16
Table 1.12 Comparison between indirect current control and direct current control 26
Table 2.1 LC-HAPF simulated system parameters for its steady-state compensation performance analysis .. 44
Table 2.2 Simulation results before and after PPF and LC-HAPF compensation 56
Table 3.1 System parameters of LC-HAPF and APF single-phase models 71
Table 3.2 LC-HAPF simulated and experimental system parameters for power quality compensation .. 77
Table 3.3 Simulation results for hysteresis PWM controlled LC-HAPF before and after compensation at different operation regions 82
Table 3.4 Experimental results for hysteresis PWM controlled LC-HAPF before and after compensation at different operation regions 82
Table 4.1 LC-HAPF reactive power compensation range deduction steps under a fixed dc-link voltage $v_{dcl_0} = v_{dcl_c} = 0.5v_{dcl} .. 98$
Table 4.2 LC-HAPF system parameters for simulations and experiments 104
Table 4.3 LC-HAPF simulated and experimental minimum dc-link voltage level
with respect to Q_{Lx} within $V_{dcL} = 10V$, $20V$, $30V$ and $40V$ 105

Table 4.4 Simulation results before and after LC-HAPF reactive power compensation with an adaptive dc-link voltage control
(Under-compensation by passive part, $L_{c1} = 6mH$, $C_{c1} = 140\mu F$). 111

Table 4.5 Experimental results before and after LC-HAPF reactive power compensation with an adaptive dc-link voltage control
(Under-compensation by passive part, $L_{c1} = 6mH$, $C_{c1} = 140\mu F$). 111

Table 4.6 Simulation results before and after LC-HAPF reactive power compensation with an adaptive dc-link voltage control
(Over-compensation by passive part, $L_{c1} = 6mH$, $C_{c1} = 190\mu F$). 111

Table 4.7 Experimental results before and after LC-HAPF reactive power compensation with an adaptive dc-link voltage control
(Over-compensation by passive part, $L_{c1} = 6mH$, $C_{c1} = 190\mu F$). 111

Table 4.8 Simulation results before and after LC-HAPF reactive power compensation with an adaptive dc-link voltage control during unbalanced loading situation................................. 117

Table 5.1 Minimum dc-link voltage deduction steps of the LC-HAPF without and with L_{cn} ... 132

Table 5.2 Characteristics of the LC-HAPF without and with L_{cn} 135

Table 5.3 LC-HAPF system parameters for simulations and experiments............. 136

Table 5.4 Simulated and experimental fundamental reactive current, 3rd, 5th, 7th and 9th orders harmonic current values of the loading 140

Table 5.5 Simulated and experimental required dc-link voltage of the LC-HAPF without and with L_{cn} .. 140

Table 5.6 Summary of simulated and experimental results before and after LC-HAPF compensation during balanced loading situation.............. 140

Table 5.7 Simulated fundamental reactive current, 3rd, 5th, 7th and 9th orders harmonic current values of the loading .. 145

Table 5.8 Simulated and experimental phase c required dc-link voltage of the LC-HAPF without and with L_{cn} .. 146

Table 5.9 Simulation results before and after LC-HAPF compensation during unbalanced loading situation .. 146

Table 6.1 A 220V-10kVA LC-HAPF system parameters................................. 152
Table 6.2 Experimental parameters for balanced and unbalanced loading situations.

.. 153

Table 6.3 Parameters of the signal conditioning boards (in peak value). 161

Table 6.4 Experimental results before LC-HAPF compensation under balanced
loading situation... 166

Table 6.5 Experimental results before LC-HAPF compensation under unbalanced
loading situation... 166

Table 6.6 LC-HAPF experimental minimum dc-link voltage with respect to Q_{Lxf}
without or with L_{en} under balanced and unbalanced loading situations. 166

Table 6.7 Experimental 3rd, 5th, 7th and 9th orders load harmonic current values
under balanced and unbalanced loading situations... 167

Table 6.8 LC-HAPF experimental minimum dc-link voltage without or with L_{en}
under balanced and unbalanced loading situations... 167

Table 6.9 Experimental results after LC-HAPF compensation with fixed dc-link
voltage control under balanced loading situation.. 172

Table 6.10 Experimental results after LC-HAPF compensation with adaptive
dc-link voltage control under balanced loading situation...................................... 175

Table 6.11 Experimental results after LC-HAPF compensation with adaptive
dc-link voltage control under unbalanced loading situation............................ 175

Table 6.12 Experimental inverter power loss of LC-HAPF with fixed V_{dc1u}, V_{dc1L}
=75V, proposed adaptive dc-link voltage control, and proposed adaptive
dc-link voltage control with L_{en} under balanced and unbalanced loading
situations.. 176

Table 6.13 Experimental results after LC-HAPF compensation with adaptive
dc-link voltage control and L_{en} under balanced loading situation............ 178

Table 6.14 Experimental results after LC-HAPF compensation with adaptive
dc-link voltage control and L_{en} under unbalanced loading situation....... 178

Table A.1 A 55V-1.65kVA LC-HAPF system parameters................................. 187
LIST OF ABBREVIATIONS

A: AMPERES
AC: ALTERNATING CURRENT
A/D: ANALOG-TO-DIGITAL
APF: ACTIVE POWER FILTER
DC: DIRECT CURRENT
DFACTS: DISTRIBUTION FLEXIBLE AC TRANSMISSION SYSTEM
DSP: DIGITAL SIGNAL PROCESSOR
HAPF: HYBRID ACTIVE POWER FILTER
IGBT: INSULATED GATE BIPOLAR TRANSISTOR
IPM: INTELLIGENT POWER MODULE
PCB: PRINTED CIRCUIT BOARD
PPF: PASSIVE POWER FILTER
PWM: PULSE WIDTH MODULATION
STATCOM: STATIC SYNCHRONOUS COMPENSATOR
THD: TOTAL HARMONIC DISTORTION
RMS: ROOT MEAN SQUARE
V: VOLTS
VSI: VOLTAGE SOURCE INVERTER