Electromagnetic Sub-MHz Modeling of Multilayer Human Limb for the Galvanic Coupling type Intra-Body Communication

by

Pun Sio Hang

Doctor of Philosophy in Electrical and Electronics Engineering

2011

Faculty of Science and Technology
University of Macau
Electromagnetic Sub-MHz Modeling of Multilayer Human Limb for the Galvanic Coupling type Intra-Body Communication

by

Pun Sio Hang

Supervisor: Prof. Vai Mang I
Co-supervisor: Dr. Mak Peng Un
Co-supervisor: Prof. Du Min

Department of Electrical and Electronics Engineering
Doctor of Philosophy
in
Electrical and Electronics Engineering

October, 2011

Faculty of Science and Technology

University of Macau
Acknowledgments

I would like to express my sincere gratitude to those who made this thesis possible. Your support is very important throughout the research and preparation of the work. It is my honor and luckiness to meet all of you in my life.

I would like to thank my supervisors Prof. Vai Mang I, Dr. Mak Peng Un and Prof. Du Min for their continuous supports and faith in my project. The numerous discussions and arguments are inspiriting and they are the major source of innovation of the research project. I am grateful to the examiners for providing professional opinions and suggestions for my research and also the external examiners for coming all the way to Macau for the examination. The comments are essential factors toward an excel and professional research.

A very special appreciation goes to our cooperation partners - Dr. Gao Yue Ming, Prof. Pan Haibo, and colleagues of Institute of Precision Instrument - Fuzhou University and Key Laboratory of Medical Instrumentation & Pharmaceutical Technology - Fujian Province. It is my pleasure to work side by side with them. I always got inspiration from their work and discussion. I shall always treasure our friendship and the memory of our meetings.

My gracefulness goes to Mr. Pedro Antonio Mou, and colleagues of the Biomedical Engineering Laboratory, Mr. Cheang Sek Un of the Control and Automation Laboratory, Mr. Lou Weng Tim of the Electronics Laboratory, Mr. Lou Ip Keong of the Microprocessor Laboratory, Prof. Wong Pak Kin, Dr. Chan Iat Neng, Dr. Wan Feng, Dr. Wong Fai, and Dr. Chao Sam. During this period, consistent
and comprehensive supports have been obtained from them. It is a wonderful experience to work alongside with you.

I would like to express my thankfulness to Dr. Kou Kit Ian of the Department of Mathematics. I am very appreciate for the kindness and assistant provided. I would also like to thank Prof. Kou Kun Pang of the Department of Civil Engineering. He generously allowed me to sit in on the “Finite Element Method” course. I am also enjoy the discussions with Prof. Sin Vai Kuong and his colleagues of the Department of Electromechanical Engineering. The discussions related to the numerical methods are exciting and encouraging.

My gratitude also goes to the Science and Technology Development Fund of Macau, the Research Committee of the University of Macau, the National Natural Science Foundation of China, the Funds of Fujian Provincial Department of Education, and the Funds of Fujian Provincial Department of Science & Technology. Their continuous support during these years is one of the key factors for the realization of the thesis. I deeply appreciate for the kind support.

Take this opportunity, I would like to express my appreciation to all of my teachers and mentors for their cultivation, including: Mr. Mok Chong Kin, Mrs. Pang Tak Kit, Father. Luis Lei Xavier, Prof. Chen Wei Ji, Prof. Vladimiro Miranda, Prof. Manuel Matos, Prof. João Pegas Lopes, Prof. Han Ying Duo and Prof. Zhang Yuan Ting. I also want to thank all of my friends for taking care of me in these years.

Lastly, my deepest thanks go to my parents and families. I can hardly complete this thesis without their support, toleration and sacrifice. I would deeply grateful to my beloved Daniela de Assis. No words can express my gratitude for her contribution and unlimited support.

Pun Sio Hang

Macau S.A.R., 2011
Abstract

The research and development in the field of Body Area Networks (BAN) have recently drawn increasing attention in both academic and industrial arenas. The driving force originates from the benefit of being able to share information between devices and sensors adhered to the human body. However, due to the high requirements of BAN in terms of weight, size, energy efficiency, and electromagnetic interference, the conventional wireless technologies are not optimal for the implementation of BAN. Recently, the emergence of the Intra-Body Communication (IBC), which employs the human body as a communication channel, could be an innovative networking method for the realization of BAN.

In order to conduct a systematic analysis to manifest the underlying principle of IBC, a prospective based on the electromagnetic theory and the volume conductor theory was introduced to the analysis of the IBC. In this approach, the human body was represented by means of the dielectric properties; and, the IBC problem was viewed as a combination of the electrical stimulation system and the biopotential recording system. By the simplification of the human limb with concentric tissue layer cylinder and quasi-static approximation, a multilayer analytical model of the Galvanic Coupling type IBC was obtained.

To validate the accuracy of the developed model of the IBC, both in vitro and in vivo experiments were conducted. From the in vitro experiments, comparisons between measurements and calculations showed that the model agreed with the IBC signal distribution inside phantoms (maximum error less than 10%). Additionally, the model also showed its prediction capability of IBC signal distribution
ABSTRACT

within the human limb in the *in vivo* experiments.

Through the theoretical and experimental investigation of the Galvanic Coupling type IBC, the formulations of the IBC signal distribution on the human limb have been obtained. The formulations not only show the feasibility of IBC, but also indicate that the Galvanic Coupling type IBC is able to provide connectivity with the implanted devices. Additionally, the analysis also shows that signal of the Galvanic Coupling type IBC is confined within the human body whenever the carrier frequency is less than 1MHz.
Contents

Acknowledgments i

Abstract iii

List of Tables ix

List of Figures xi

1 Introduction 1

1.1 General scientific background - Body area network 3
1.2 Specific background - Intra body communication 5
1.3 Research objectives and contributions 5
1.4 Thesis organization . 6
1.5 Statement of originality and related published work 7

2 Brief Review of Intra Body Communication 13

2.1 Development of IBC . 14
2.2 Applications . 19
2.3 Coupling types of IBC . 21
2.3.1 Capacitive Coupling type IBC 23
2.3.2 Galvanic Coupling type IBC 25
2.4 Modeling of the Galvanic Coupling type IBC 27
2.5 Safety considerations and regulations 31
2.6 Chapter summary . 34

3 Volume Conductor Theory 37
CONTENTS

3.1 Use of volume conductor theory .. 37
3.2 Human tissue modeling .. 39
 3.2.1 Overview of the electrical properties of human tissues ... 39
 3.2.2 Parametric models of human tissues 41
 3.2.3 Database of human tissues .. 43
3.3 Electromagnetic wave in volume conductor 46
3.4 Quasi-static approximations .. 49
 3.4.1 Application of quasi-static approximation in volume con-
 ductor .. 51
3.5 Chapter summary ... 55

4 Mathematical Model .. 57
4.1 Modeling of IBC with volume conductor 58
4.2 Homogeneous 2D model .. 61
4.3 Inhomogeneous 2D model ... 65
4.4 Homogeneous 3D model .. 71
4.5 Inhomogeneous 3D model ... 76
4.6 Inhomogeneous 3D model with capacitance effect 86
4.7 Chapter summary ... 96

5 Experiments ... 97
5.1 In vitro experiment - Phantom ... 97
 5.1.1 Measurement setup .. 98
 5.1.2 Construction of the phantom 99
 5.1.3 Experiment result .. 101
 5.1.4 Discussions .. 103
5.2 In vitro experiment - Cooked Meat 107
 5.2.1 Experiment result .. 107
 5.2.2 Discussions .. 111
5.3 In vivo experiment .. 112
 5.3.1 Measurement setup .. 112
CONTENTS

5.3.2 Human subjects and preparation before experiment 116
5.3.3 Experiment result . 117
5.3.4 Discussions . 124
5.4 Application experiment of IBC system 127
5.4.1 Configuration . 127
5.4.2 Result and discussions . 129
5.5 Chapter summary . 131

6 **Summary and Conclusion**
6.1 Summary . 135
6.2 Conclusion . 136
6.3 Discussions for future development 139

References

Curriculum vitae
List of Tables

1.1 Characteristic data of standard wireless technologies 4

2.1 Summary of IBC technology . 22

2.2 Effect of 60Hz electrical shock . 33

2.3 Ranges for threshold currents for indirect effects, including children, women and men . 33

2.4 Reference levels for time varying contact currents from conductive objects . 34

3.1 Model parameters of selected tissues 44

3.2 Electrical parameters derived from parametric models 45

4.1 Verification of the quasistatic criteria 87

5.1 Calculations and measurements of the IBC signal distribution in the phantom along r-direction . 103

5.2 Calculations and measurements of the IBC signal distribution in the phantom along z-direction . 104

5.3 Calculations and measurements of the IBC signal distribution in the sausage along z-direction . 108

5.4 General information of the subjects of the in vivo experiment . . . 117

5.5 The measured results of the in vivo experiment with changing frequency (separation = 60mm) . 120

5.6 The measured results of the in vivo experiment with changing distance . 122
List of Figures

1.1 Illustration of a typical health care system ... 2

2.1 Illustration of the Capacitive Coupling type IBC 23
2.2 Electric field produced by Capacitive Coupling type IBC 24
2.3 Illustration of Galvanic Coupling type IBC ... 26
2.4 Basic principle of Galvanic Coupling type IBC 26
2.5 Equivalent circuit proposed by T. Handa et al. 28
2.6 Equivalent circuit proposed by K. Hachisuka et al. 29
2.7 Equivalent circuit proposed by M. Wegmueller et al. 30
2.8 Numerical model proposed by M. Wegmueller et al. 31
2.9 “Let-go” threshold with varying frequency .. 32

3.1 Cell suspension model ... 40
3.2 Equivalent circuit for cell suspension model .. 40
3.3 Plot of relative permittivity and conductivity of muscle (data derived from parametric models of S. Gabriel et al.) 42

4.1 Galvanic coupling of IBC on human upper limb 59
4.2 Circuit Diagram of Galvanic coupling of IBC on human upper limb 59
4.3 Multilayer cylindrical model of a human limb 60
4.4 2D model of IBC on a human limb .. 61
4.5 Inhomogeneous 2D model of IBC on a human limb 65
4.6 Homogeneous 3D model of IBC on a human limb 71
4.7 Inhomogeneous 3D model of IBC on a human limb 77
LIST OF FIGURES

4.8 Inhomogeneous 3D model of IBC on a human limb (including the permitivities of tissues) 88

5.1 The design of the phantom for the in vitro experiment 98
5.2 The measurement configuration for the in vitro experiment 99
5.3 The measurement probes for the in vitro experiment 99
5.4 The electrical parameters of the inner material of the phantom . 101
5.5 The electrical parameters of the outer material of the phantom . 102
5.6 The comparison of the calculated and measured results of the phantom in r-direction 105
5.7 The comparison of the calculated and measured results of the phantom in z-direction 106
5.8 The photo of the sausage for the in vitro experiment 109
5.9 The photo of measuring the sample of the sausage with the dielectric test fixture 109
5.10 The relative permittivity and conductivity of the sausage 110
5.11 The comparison of the calculated and measured results of the sausage with IBC signal 110
5.12 Measurement configuration for in vivo experiments 113
5.13 Schematic of the RC network for measurement 114
5.14 Measurements of the RC network with the network analyzer ... 114
5.15 Block diagram for the measurement 115
5.16 Schematic diagram for the measurement 115
5.17 IBC channel characteristics of subjects (separation = 60mm) ... 118
5.18 IBC channel characteristics with changing distance between the transmitter and receiver 118
5.19 Comparison between the measurements and the calculations (without capacitance effect) 119
5.20 Comparison between the measurements and the calculations (with capacitance effect) 121
5.21 IBC channel gain with different transmitter currents 123
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.22</td>
<td>IBC channel gain with different size of receiver electrodes (Electrode size of transmitter: 40mm x 40mm)</td>
<td>124</td>
</tr>
<tr>
<td>5.23</td>
<td>IBC channel gain with different size of transmitter electrodes (Electrode size of receiver: 40mm x 40mm)</td>
<td>125</td>
</tr>
<tr>
<td>5.24</td>
<td>Application for transmitting biosignal with IBC system</td>
<td>128</td>
</tr>
<tr>
<td>5.25</td>
<td>Block diagram of the application prototype</td>
<td>129</td>
</tr>
<tr>
<td>5.26</td>
<td>Spectrum of the received signal</td>
<td>130</td>
</tr>
<tr>
<td>5.27</td>
<td>The output signal of the FM demodulator</td>
<td>131</td>
</tr>
<tr>
<td>5.28</td>
<td>The spectrum of the demodulated signal</td>
<td>132</td>
</tr>
<tr>
<td>5.29</td>
<td>The estimated channel capacity of the IBC</td>
<td>133</td>
</tr>
<tr>
<td>6.1</td>
<td>Measurements of the gain of the air channel</td>
<td>138</td>
</tr>
<tr>
<td>6.2</td>
<td>Scatter plot of the path loss versus distance between implants</td>
<td>140</td>
</tr>
<tr>
<td>6.3</td>
<td>Scatter plot of the path loss versus distance between implant and body surface</td>
<td>141</td>
</tr>
<tr>
<td>6.4</td>
<td>Gain of the Galvanic Coupling type IBC between implants in a phantom</td>
<td>142</td>
</tr>
</tbody>
</table>