Stress-Strain Behaviour of Cold-Worked Materials in Cold-Formed Stainless Steel Sections

by

Pei QIU

Master of Science in Civil Engineering

Aug 2011

Faculty of Science and Technology
University of Macau
University of Macau

Abstract

Stress-Strain Behaviour of Cold-Worked Materials in Cold-Formed Stainless Steel Sections

by Pei QIU

Thesis Supervisor: Prof. Wai-Meng QUACH

The forming process of cold-formed steel sections induces cold work in structural members, and such cold work can enhance the strength but reduce the ductility of materials. The enhanced strength of cold-worked materials, e.g. corner materials (materials in the corner region of cold-formed sections) and flat materials (materials in the flat portion of cold-formed sections), has been traditionally determined using semi-empirical equations. These semi-empirical models for the cold-worked materials are only applicable to the prediction of the enhanced yield strength (or 0.2% proof stress), but are neither capable of predicting the stress-strain behaviour nor able to account for the difference in the mechanical behaviour of the cold-worked materials under tension and compression. To overcome these limitations, a simple finite element approach has been previously developed and presented elsewhere (Qiu 2008) by the author to predict the initial stress-strain behaviour of cold-worked materials. This simple finite element approach is employed in the present study to examine the effect of forming parameters and testing setup on the initial stress-strain behaviour of cold-worked materials. Numerical results of this parametric study are presented in the thesis.

The accurate prediction of the reduced ductility of cold-worked materials is not yet available. In order to enable the prediction of the reduced ductility, an advanced finite element approach is then proposed in the present study for predicting the full-range stress-strain behaviour of cold-worked materials (including both corner materials and flat materials) in cold-formed stainless steel sections. Thus, the proposed advanced
method can predict not only the enhanced strength but also the reduced ductility of cold-worked materials. In this method, the effect of cold work on the stress-strain behaviour of cold-worked materials is accounted for by means of a numerical simulation of the forming of cold-formed steel sections, with the resulting residual stresses and equivalent plastic strains specified as the initial state in subsequent finite element simulations of coupon tests. The necking of thin sheet metals is also taken into account in the finite element simulation of coupon tests, in order to quantify the ductility.

Under uni-axial tensile loading in coupon tests, diffuse necking occurs in a thin sheet coupon when ultimate stress is reached. The diffuse necking spreads over a length of the order of the width. At the end of the diffuse necking, localized necking starts to develop over a length of the order of the sheet thickness and rapidly leads to fracture. As the nominal strain at the onset of localized necking is close to the nominal strain at fracture, the ductility of thin sheet metals including cold-worked materials can be characterized by the strain at the onset of localized necking in the present study.

In this study, an experimental investigation on the stress-strain behaviour of corner materials was also carried out to verify the accuracy of the proposed finite element approach. A series of uni-axial tensile tests on both flat materials and corner materials were performed. Three different testing methods (i.e. 1) single corner-coupon tests, 2) twin corner-coupon tests with larger eccentricity, and 3) twin corner-coupon tests with smaller eccentricity) for the stress-strain behaviour of corner coupons were examined for their validity. A series of stub column tests on cold-formed channel sections were also performed to examine the enhanced cross-sectional strength due to cold work.
TABLE OF CONTENTS

Abstract i

Preface iii

Acknowledgments v

Table of contents vii

List of figures xi

List of tables xxv

Notation xxxi

1. Introduction 1
 1.1 Background 1
 1.2 Objectives 3
 1.3 Outline of thesis 4

2. Literature review 9
 2.1 General 9
 2.2 Residual stresses 10
 2.3 Mechanical testing 12
 2.3.1 Tensile and compressive coupon tests of flat sheets 12
 2.3.2 Tensile and compressive coupon tests of corners 13
 2.3.3 Existing experimental studies of mechanical properties of corner materials 14
 2.4 Material Modelling 16
 2.4.1 Stress-strain relationships of flat materials 16
 2.4.2 Mechanical properties of corner materials 20
 2.4.3 True stress-plastic strain relationships after necking 24
 2.5 Conclusions 27

3 Experimental investigation 31
 3.1 Introduction 31
 3.2 Material tests at USyd 32
 3.2.1 General 32
 3.2.2 Tensile and compressive coupon tests of flat materials 33
 3.2.3 Tensile and compressive coupon tests of corner materials 33
 3.3 Material tests at UM – First Batch 34
 3.3.1 General 34
 3.3.2 Tensile coupon tests of virgin materials 35
 3.3.2.1 Preparation of flat coupons 35
 3.3.2.2 Testing and results 36
3.3.3 Tensile coupon tests of corner materials
 3.3.3.1 Preparation of corner coupons
 3.3.3.2 Single corner coupons
 3.3.3.3 Twin corner coupons
 3.3.3.4 Testing and results
3.3.4 Stub column tests
 3.3.4.1 Preparation of stub column specimens
 3.3.4.2 Test set-up, instrumentation and operation
 3.3.4.3 Initial geometrical imperfection
3.4 Material tests at UM – Second Batch
 3.4.1 General
 3.4.2 Tensile coupon tests of virgin materials
 3.4.2.1 Preparation of flat coupons
 3.4.2.2 Testing and results
 3.4.3 Tensile coupon tests of corner materials
 3.4.3.1 Preparation of corner coupons
 3.4.3.2 Single corner coupons
 3.4.3.3 Twin corner coupons with larger eccentricity
 3.4.3.4 Twin corner coupons with smaller eccentricity
 3.4.3.5 Testing and results
 3.4.3.6 Comparison of TCLE with TCSE
 3.4.3.7 Comparison of TCSE with SC
3.5 Summary

4 Simple finite element approach
 4.1 Introduction
 4.2 Finite element prediction of residual stresses in flat materials
 4.2.1 General
 4.2.2 Nonlinear strain hardening
 4.2.3 Material anisotropy
 4.2.4 Finite element simulations of coiling and uncoiling
 4.2.5 Residual stresses and equivalent plastic strains
 4.3 Finite element predictions of residual stresses in corner materials
 4.3.1 General
 4.3.2 Material modelling
 4.3.3 Finite element simulations of cold bending
 4.3.4 Residual stresses and equivalent plastic strains
 4.4 Finite element simulations of tensile tests of flat materials
 4.4.1 General
 4.4.2 Nonlinear strain hardening
 4.4.3 Material anisotropy
 4.4.4 Modelling procedures of tensile tests of flat materials
 4.4.5 Mesh convergence study
 4.4.6 Elastic modulus study
 4.4.7 Effect of coiling curvature
 4.5 Finite element simulations of compressive tests of flat materials
 4.5.1 General
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.4</td>
<td>Finite element prediction of mechanical behaviour of corner materials</td>
<td>200</td>
</tr>
<tr>
<td>5.3.4.1</td>
<td>General</td>
<td>200</td>
</tr>
<tr>
<td>5.3.4.2</td>
<td>Material modelling</td>
<td>201</td>
</tr>
<tr>
<td>5.3.4.3</td>
<td>Finite element modelling of corner tensile coupon tests</td>
<td>202</td>
</tr>
<tr>
<td>5.3.4.4</td>
<td>Energy-fraction study</td>
<td>204</td>
</tr>
<tr>
<td>5.3.4.5</td>
<td>Mesh convergence study</td>
<td>205</td>
</tr>
<tr>
<td>5.4</td>
<td>Comparison with test results</td>
<td>205</td>
</tr>
<tr>
<td>5.4.1</td>
<td>General</td>
<td>205</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Comparison with results from single corner-coupon tests</td>
<td>206</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Comparison with results from twin corner-coupon tests with larger eccentricity</td>
<td>207</td>
</tr>
<tr>
<td>5.4.4</td>
<td>Comparison with results from twin corner-coupon tests with smaller eccentricity</td>
<td>208</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Comparison with predictions from existing semi-empirical models</td>
<td>208</td>
</tr>
<tr>
<td>5.5</td>
<td>Summary</td>
<td>209</td>
</tr>
<tr>
<td>6</td>
<td>Material properties of the complete cross section under the cold-worked state</td>
<td>233</td>
</tr>
<tr>
<td>6.1</td>
<td>General</td>
<td>233</td>
</tr>
<tr>
<td>6.2</td>
<td>Stub column test results</td>
<td>233</td>
</tr>
<tr>
<td>6.3</td>
<td>Current design methods for section compression capacity</td>
<td>234</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Carbon steel columns</td>
<td>234</td>
</tr>
<tr>
<td>6.3.2</td>
<td>Stainless steel columns</td>
<td>237</td>
</tr>
<tr>
<td>6.4</td>
<td>Comparison of experimental results with predictions from current design methods</td>
<td>239</td>
</tr>
<tr>
<td>6.5</td>
<td>Conclusions</td>
<td>240</td>
</tr>
<tr>
<td>7</td>
<td>Conclusions</td>
<td>245</td>
</tr>
<tr>
<td>7.1</td>
<td>General</td>
<td>245</td>
</tr>
<tr>
<td>7.2</td>
<td>Summary and conclusions</td>
<td>246</td>
</tr>
<tr>
<td>7.3</td>
<td>Future work</td>
<td>247</td>
</tr>
</tbody>
</table>

References

<table>
<thead>
<tr>
<th>Appendix</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Coupon tests results – First batch</td>
<td>255</td>
</tr>
<tr>
<td>B</td>
<td>Measured geometric imperfections</td>
<td>277</td>
</tr>
<tr>
<td>C</td>
<td>Coupon tests results – Second batch</td>
<td>291</td>
</tr>
<tr>
<td>D</td>
<td>Finite element predictions – Simple approach</td>
<td>307</td>
</tr>
<tr>
<td>E</td>
<td>Finite element predictions – Advanced approach</td>
<td>347</td>
</tr>
<tr>
<td>F</td>
<td>Stub column test results</td>
<td>377</td>
</tr>
</tbody>
</table>