Low Power High Efficiency Excess-Loop-Delay Compensation Techniques in Continuous-Time Delta-Sigma Modulators

by

Cai Chen-Yan, Joy

(M-A9-6522-2)

Master of Science in Electrical and Electronics Engineering

February, 2013

Faculty of Science and Technology University of Macau
Low Power High Efficiency Excess-Loop-Delay Compensation Technique in Continuous-Time Delta-Sigma Modulators

by

Cai Chen-Yan, Joy

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science
in
Electrical and Electronic Engineering

Faculty of Science and Technology
University of Macau

2013

Approved by ___
Supervisor

__
Co-Supervisor

Date __
In presenting this thesis in partial fulfillment of the requirements for a Master's degree at the University of Macau, I agree that the Library and the Faculty of Science and Technology shall make its copies freely available for inspection. However, reproduction of this thesis for any purposes or by any means shall not be allowed without my written permission. Authorization is sought by contacting the author at

Address: State Key Laboratory of Analog and Mixed-Signal VLSI, FST, University of Macau, Av. Padre Tomás Pereira, Taipa, Macao, China.

E-mail: chenyan.cai@gmail.com

Signature ______________________

Date __________________________
Abstract

Because of the convenient and powerful function of mobile telecommunication devices, the demand of it is tremendously increased in the whole world wide nowadays. As the connection element between the analog and digital signal world, the modulators are obligatory. On account of the merits of low power consumption, small silicon area, large signal bandwidth, and also inherent anti-aliasing function, the Continuous-Time (CT) ΣΔ modulator has been extensively used in wideband telecommunication systems.

However, the performance of CT ΣΔ modulators is restricted by the non-idealities of practical circuit elements. Excess Loop Delay (ELD) is one of the dominant effects induces the error in the Transfer Function, and then reduces the performance of the CT ΣΔ modulator. Even worse, the error may cause the instability of the modulator.

This thesis proposes three different techniques with the properties of low-power and high-efficiency to compensate the ELD effect of CT ΣΔ modulators. The first technique is based on the Gm-C loop filter and with one passive resister added. After verifying it in 65nm CMOS technique, the proposed technique can reduce the power consumption up to 32% and compensate up to half of clock cycle delay amount. The second technique employs digital logic elements and an RC feedback network for the active-RC loop filter to track the amount of ELD up to half of clock cycle synchronously on a real-time modulator, and then compensate it. It is verified in 65nm CMOS process, compare with the traditional technique, power reduced from 6.5mW to 5.45mw. And the third technique is for hybrid active-passive integrators. The efficiency of the proposed compensation techniques are implemented in the designed modulators and verified by the transistor-level simulation as well. This technique can compensate the delay amount up to one clock cycle and reduced more than half of power dissipation. Compare with the traditional techniques, these three techniques are quite low power dissipation and can compensate the ELD effect effectively.
KEY WORDS

Continuous-Time Sigma-Delta Modulator

Excess-Loop-Delay Effect

Proportional-Integrating Excess-Loop-Delay Compensation

Passive Excess-Loop-Delay Compensation Technique

Excess-Loop-Delay Tracking Compensation Technique
ACKNOWLEDGEMENT

I wish to express my gratitude to my Supervisors Doc. Sin Sai Weng and Prof. U Seng-Pan for their supports and guidance during the course of my M.Sc. Study at University of Macau. I would also like to thank them for leading me into this one of the most challenge and worthwhile design integrated circuit areas in the electronic world. Few arduous problems can be solved without their immensely patient and guidance.

Particularly, I would like to thank to Mr. Tim Jiang for his valuable suggestions on my research work, as well as developing new ideas; and also Mr. Clark Chen for the pleasant and helpful cooperation with him.

Besides, the lab mates such as Alpha Zhao, Ray Wang, Arshad, Steve Ding, Steven Wu, Hugh Du, Gavin Zhang, Dick Wong, Guo He, Jankey Zhong, Julia Zhu and Ivor Chan gave me lots of assistances during the project. I appreciate their friendship as well as help very much. I also want to thank Leo Ng and Lewis Lei for their lab equipment support.

I would like to thank the Research Committee of University of Macau and Macau Science and Technology Development Fund (FDCT) for the finical support during my graduate study.

Last, I express my deepest gratitude to my family for their loves, kindness encouragement and support. Finally, I express sincerely my gratitude once more to all of the people who have contributed to this work.
To my family
LIST OF ABBREVIATIONS

ADC Analog to Digital Convertor
AMS Analog Mixed-Signal
AP Active-Passive
CC Compensation Component
CIFB Chain of Integrators with distributed FeedBack
CIFF Chain of Integrators with weighted Feed-Forward
CLG Control Logic Generator
CT Continuous-Time
DAC Digital-to-Analog Converter
DEM Dynamic Element Matching
DFF D-Flip-Flop
DSP Digital Signal Processor
DT Discrete-Time
DWA Data Weighted Averaging
ELD Excess-Loop Delay
GSM Global System for Mobile
HRZ Half-Return-to-Zero
HSPA High Speed Packet Access
IIT Impulse Invariant Transform
IBN In-Band-Noise
MASH Multi-stAge noise SHaping
NRZ Non-Return-to-Zero
NTF Noise Transfer Function
OSR OverSampling Ratio
Op-Amp Operational Amplifier
PA Power Amplifier
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLL</td>
<td>Phase Lock Loop</td>
</tr>
<tr>
<td>PM</td>
<td>Power Management</td>
</tr>
<tr>
<td>PP</td>
<td>Pulse-Position</td>
</tr>
<tr>
<td>PS</td>
<td>Pulse Shape</td>
</tr>
<tr>
<td>PSD</td>
<td>Power Spectral Density</td>
</tr>
<tr>
<td>PW</td>
<td>Pulse-Width</td>
</tr>
<tr>
<td>RZ</td>
<td>Return-to-Zero</td>
</tr>
<tr>
<td>SNDR</td>
<td>Signal-to-Noise-and-Distortion-Ratio</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>STF</td>
<td>Signal Transfer Function</td>
</tr>
<tr>
<td>TD-SCDMA</td>
<td>Time Division Synchronous Code Division Multiple Access</td>
</tr>
<tr>
<td>UMTS</td>
<td>Universal Mobile Telecommunication System</td>
</tr>
<tr>
<td>VCO</td>
<td>Voltage Controlled Oscillator</td>
</tr>
<tr>
<td>WCDMA</td>
<td>Wideband Code Division Multiple Access</td>
</tr>
<tr>
<td>ZCD</td>
<td>Zero-Crossing Detector</td>
</tr>
<tr>
<td>ΣΔ</td>
<td>Sigma-Delta</td>
</tr>
<tr>
<td>3G</td>
<td>3rd Generation</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

ABSTRACT ...III
KEY WORDS ..IV
ACKNOWLEDGEMENT ...V
LIST OF ABBREVIATIONS ..VII
TABLE OF CONTENTS ...IX
LIST OF FIGURES ...XII
LIST OF TABLES ...XVI
CHAPTER 1 INTRODUCTION ...1
 1.1 BACKGROUND AND APPLICATION ...1
 1.1.1 3G WIRELESS COMMUNICATIONS ..1
 1.1.2 APPLICATION OF ADCs IN 3G WCDMA RECEIVER5
 1.2 RESEARCH MOTIVATION ...7
 1.3 THESIS ORGANIZATION ..9
 1.4 STATEMENT OF ORIGINALITY ..11
CHAPTER 2 ELEMENTARY OF ΔΣ MODULATION ..13
 2.1 INTRODUCTION ..13
 2.2 QUANTIZATION AND OVERSAMPLING ..13
 2.3 ΔΣ MODULATION ...18
 2.4 SECOND AND HIGHER ORDER MODULATION22
 2.5 SINGLE-STAGE AND MULTI-STAGE ΔΣ TOPOLOGY25
 2.5.1 SINGLE-STAGE MODULATOR ...25
 2.5.2 MULTI-STAGE MODULATION ...27
 2.6 SUMMARY ..29
CHAPTER 3 CONTINUOUS-TIME (CT) ΔΣ MODULATION31
 3.1 INTRODUCTION ..31
 3.2 ADVANTAGES OF CT ΔΣ MODULATION ...31
 3.3 CONVERSION OF A DT ΔΣ MODULATION ..32
 3.3.1 IMPULSE-INARIANT TRANSFORM ...33
 3.3.2 MODIFIED Z-TRANSFORM ...35
3.4 Implicit Anti-Aliasing Filtering .. 38
3.5 Alternatives for CT Filter Implementation .. 41
 3.5.1 Active RC Integrator ... 41
 3.5.2 Gm-C Integrator ... 43
 3.5.3 Passive RC Integrator ... 44
3.6 Non-ideality Issues of Practical CT ΔΣ Modulator 46
 3.6.1 Time Constant Variation .. 46
 3.6.2 Finite Gain and GBW for the Op-Amp in CT Integrator 48
 3.6.3 Clock Jitter Effect ... 50
3.7 Summary .. 53

CHAPTER 4 Excess-Loop-Delay (ELD) and Its Compensation
 Techniques of CT ΔΣ Modulators with Active RC Integrator 54
 4.1 Introduction .. 54
 4.2 ELD Effect in CT ΔΣ Modulator ... 54
 4.2.1 Delay Affects the Return-to-Zero (RZ) Feedback 55
 4.2.2 Delay Affects the Non-Return-to-Zero (NRZ) Feedback 58
 4.3 Existed ELD Compensation Methods .. 61
 4.3.1 Traditional Compensation Technique with Additional Feedback Path .. 62
 4.3.2 ELD Compensation Method with a Digital Differentiator 64
 4.3.3 ELD Compensation with PI-Element 65
 4.4 Summary .. 68

CHAPTER 5 An ELD Tracking Compensation Technique for
 Active-RC CT ΣΔ Modulators .. 69
 5.1 Introduction .. 69
 5.2 ELD Tracking Compensation Method ... 70
 5.2.1 Working Principle of Compensation Component 72
 5.2.2 Delay Issues of Compensation Component 75
 5.3 Design Example and Simulation Verification 77
 5.4 Summary .. 81
CHAPTER 6 A PASSIVE ELD COMPENSATION TECHNIQUE FOR GM-C
BASED CT ΔΣ MODULATORS... 82
 6.1 INTRODUCTION .. 82
 6.2 PROPOSED TECHNIQUE WITH GM-C INTEGRATOR 83
 6.3 DESIGN EXAMPLE OF CT ΔΣ MODULATOR 88
 6.4 SIMULATION VERIFICATION ... 89
 6.5 SUMMARY .. 92
CHAPTER 7 AN ELD COMPENSATION TECHNIQUE FOR CT ΔΣ
MODULATORS WITH HYBRID ACTIVE-PASSIVE (AP) LOOP-FILTERS .. 93
 7.1 INTRODUCTION .. 93
 7.2 LOOP FUNCTION OPTIMIZATION WITH SINGLE-BIT QUANTIZER FOR
HYBRID AP CT ΔΣ MODULATOR .. 95
 7.3 ELD COMPENSATION FOR A CT ΔΣ MODULATOR WITH HYBRID ACTIVE-
PASSIVE LOOP-FILTERS ... 100
 7.3.1 ELD EFFECT IN THE HYBRID AP CT ΔΣ MODULATOR 101
 7.3.2 TRADITIONAL ELD COMPENSATION METHOD 104
 7.3.3 SIMPLE RESISTOR ADDER METHOD ... 105
 7.3.4 PASSIVE ELD COMPENSATION TECHNIQUE FOR HYBRID ACTIVE-
PASSIVE INTEGRATORS .. 107
 7.4 DESIGN EXAMPLE OF HYBRID AP CT ΔΣ MODULATOR 109
 7.5 SUMMARY .. 114
CHAPTER 8 CONCLUSION .. 115
 8.1 SUMMARY OF THE THESIS ... 115
 8.2 CONCLUSION OF THE THESIS ... 118
 8.3 THE FUTURE WORK .. 119
BIBLIOGRAPHY .. 120
LIST OF FIGURES

Fig.1.1 Estimation of wireless communication technology .. 2
Fig.1.2 Function of the 3G mobile phone ... 3
Fig.1.3 The investigation of mobile infrastructure in the worldwide. 4
Fig.1.4 Worldwide mobile broadband service revenue forecasting. 5
Fig.1.5 The circuit functions of a typical mobile communication system 6
Fig.1.6 The application range of over-sampling Sigma Delta and Pipeline ADC 7
Fig.2.1 Transfer curve (a) and the quantization error of a uniform multi-level quantizer (b) .. 14
Fig.2.2 Quantization noise distribution in both Nyquist rate and oversampling quantization ... 17
Fig.2.3 Basic architecture (a) and the corresponding linear model for the ΣΔ modulator (b). ... 18
Fig.2.4 Linear model for a 1st order ΣΔ modulator employing DT integrator 19
Fig.2.5 The PSDs for the quantization noise from an oversampling quantizer and a ΣΔ modulator. ... 21
Fig.2.6 A second order ΣΔ modulator. .. 22
Fig.2.7 The Mth order ΣΔ modulator. ... 24
Fig.2.8 Structures of a 5th order (a) CIFB ΣΔ modulator and (b) CIFF ΣΔ modulator. .. 26
Fig.2.9 2-1 MASH ΣΔ modulator. ... 28
Fig.3.1 Block diagrams for (a) DT and (b) CT ΣΔ modulator 33
Fig.3.2 The feedback loop filters of (a) DT and (b) CT ΔΣ modulator 34
Fig.3.3 The HRZ feedback waveform .. 36
Fig.3.4 A modified representation for CT ΣΔ modulator. ... 39
Fig.3.5 A representation for the ΣΔ modulator with CT input transfer function 39
Fig.3.6 CT ΣΔ modulator with input anti-aliasing filtering. 40
Fig.3.7 STF of a 2nd order CT ΔΣ modulator. .. 41
Fig.3.8 Structure of active RC integrator. .. 42
Fig.3.9 Transformation block of active RC integrator. ... 42
Fig.3.10 The Gm-C integrator structure. ...43
Fig.3.11 Structure of the passive RC filter. ...44
Fig.3.12 Transformation block of passive RC integrator.45
Fig.3.13 System architecture of hybrid AP CT ΔΣ modulator.45
Fig.3.14 A 2nd order CT ΔΣ Modulator with active RC integrators and one-bit quantizer..47
Fig.3.15 System sensitivity to the coefficient \(k_1\) variation.................................47
Fig.3.16 System sensitivity to the coefficient \(k_2\) variation.................................48
Fig.3.17 Equivalent small signal model of single-input single-output active RC integrator...49
Fig.3.18 Clock-jitter induced (a) PW variation and (b) PP variation52
Fig.4.1 Rectangular waveforms of: (a) RZ feedback, (b) NRZ feedback...............55
Fig.4.2 RZ feedback waveform with ELD \(\tau_d\) ..56
Fig.4.3 System architectures of a 2nd order (a) discrete-time and (b) active continuous-time ΔΣ modulator. ...56
Fig.4.4 NTF pole-zero locations of RZ feedback with delay \(\tau_d\).57
Fig.4.5 The NTF for RZ feedback with different values of delay \(\tau_d\)58
Fig.4.6 NRZ feedback pulse due to delay \(\tau_d\) ...59
Fig.4.7 Pole and zero locations of NRZ feedback when there is delay \(\tau_d\)60
Fig.4.8 The NTF with different value of delay \(\tau_d\) with NRZ feedback61
Fig.4.9 Traditional ELD compensation method. ..63
Fig.4.10 ELD compensation with a digital differentiator.64
Fig.4.11 The PI-element ELD compensation method. ...66
Fig.4.12 Realization of a PI-element for ELD compensation for an active RC integrator ..67
Fig.5.1 NRZ DAC pulse with: a) ideal case, b) with a certain amount of delay \(\tau_d\)70
Fig.5.2 Waveform of the proposed compensation technique.71
Fig.5.3 Block diagram of the proposed ELD tracking compensation technique72
Fig.5.4 Clock and reset signals for Compensation Component (CC)....................73
Fig.5.5 Implementation of the Control Logic Generator (CLG) with digital logic73
Fig.5.6 Illustration of the proposed ELD tracking compensation technique..........74
Fig.5.7 Waveforms of a) CLK0 b) theoretical \(V_{Cc}\) c) \(V_{Cc}\) with delay considered76
Fig. 5.8 Current IA of the RC feedback network for different values of the time constant τ. ... 77
Fig. 5.9 Settle error tolerance of the RC feedback network. 78
Fig. 5.10 Comparison of simulation results for 2 different cases when there is 50% T_s delay in the quantizer. ... 79
Fig. 5.11 Simulation results for system sensitivity to ELD in a 2nd order CT $\Sigma\Delta$ modulator with or without the proposed compensation technique. 80
Fig. 6.1 An ideal 2nd order CT $\Sigma\Delta$ modulator with CIFB topology. 83
Fig. 6.2 Fully differential Gm-C loop filter with CMFB .. 84
Fig. 6.3 Basic concept for ELD compensation with PI-element using Gm-C integrator .. 85
Fig. 6.4 Proposed ELD compensation with PI-element using Gm-C integrator with passive implementation ... 86
Fig. 6.5 Proposed PI-element ELD compensation with parasitic capacitor C_p 87
Fig. 6.6 Modified improved ELD compensation with PI-element using Gm-C integrator structure ... 87
Fig. 6.7 Traditional ELD compensation with Gm-C integrator in $\Sigma\Delta$ modulator. 88
Fig. 6.8 Circuit schematic of the proposed ELD compensation structure with Gm-C integrator in a 2nd order, 1-bit, CT sigma-delta modulator with NRZ DAC. 88
Fig. 6.9 Comparison of simulation results for 2 different cases when there is 50% T_s delay in the quantizer ... 90
Fig. 6.10 Simulation results for system sensitive to ELD in a 2nd order $\Sigma\Delta$ modulator with proposed compensation technique and without compensation .. 91
Fig. 7.1 System architecture of hybrid AP CT $\Delta\Sigma$ modulator. 96
Fig. 7.2 NTF pole-zero locations for the 2nd order active CT $\Delta\Sigma$ modulator and the hybrid AP modulator without optimization. 97
Fig. 7.3 Calculated NTF for the un-optimized hybrid AP and the active $\Delta\Sigma$ modulator .. 97
Fig. 7.4 Analytical model for loop function optimization of AP CT $\Delta\Sigma$ modulator 98
Fig. 7.5 Calculated NTFs for the hybrid AP CT ΔΣ modulator with different passive loop filter gain scaling values.

Fig. 7.6 NTF pole-zero location variation for the AP CT ΔΣ modulator with the passive loop filter gain scaling from 1 to 0.

Fig. 7.7 NRZ DAC feedback pulse: a) Ideal case, b) With delayed τ_d.

Fig. 7.8 The NTF when the hybrid AP modulator contains and does not contains one clock cycle delay effect with $a=0.25$.

Fig. 7.9 Traditional ELD compensation method for a 2nd order CT ΔΣ modulator with hybrid AP integrators.

Fig. 7.10 The ideal NTF (without ELD effect), the NTF for the modulator contains one clock cycle delay effect and the NTF with delay after traditional compensation with $a=0.25$.

Fig. 7.11 Passive analog adder current feedback in (a) active and (b) passive loop-filters.

Fig. 7.12 The model of the passive technique to compensate the ELD effect in the hybrid AP modulator.

Fig. 7.13 Circuit implementation of the passive ELD compensation technique for a passive RC integrator.

Fig. 7.14 Passive ELD compensation technique with hybrid AP integrators.

Fig. 7.15 Circuit schematic of the passive ELD compensation structure in a 2nd order, 1-bit, CT ΔΣ modulator with hybrid AP integrators and NRZ DAC.

Fig. 7.16 Comparison of simulation results for 2 different cases (Pin_red=-20dBFS, Pin_blue=-2dBFS) when there is 1Ts delay in the quantizer.

Fig. 7.17 SNDR versus input signal amplitude.

Fig. 7.18 The value of R_0 versus SNDR of the system.

Fig. 7.19 Simulation results for system sensitivity to ELD in a 2nd order Hybrid AP CT ΔΣ modulator with and w/o the proposed compensation technique, with Pin_low= -20dBFS and Pin_high= -2dBFS.
LIST OF TABLES

Table 3.1 THE CORRESPONDING LOOP FILTER ORDER WITH THE MODIFIED Z-TRANSFORM ... 37

Table 5.1 THE COMPARISON BETWEEN THIS WORK AND EXISTED ONES .. 80

Table 6.1 COMPARISON BETWEEN PROPOSED TECHNIQUE AND THE EXISTED STRUCTURES .. 91

Table 7.1 COMPARISON OF PERFORMANCE OF DIFFERENT STRUCTURES ... 113